
Compositional and Scalable Object SLAM

Akash Sharma, Wei Dong, and Michael Kaess

Abstract— We present a fast, scalable, and accurate Si-
multaneous Localization and Mapping (SLAM) system that
represents indoor scenes as a graph of objects. Leveraging
the observation that artificial environments are structured and
occupied by recognizable objects, we show that a composi-
tional and scalable object mapping formulation is amenable
to a robust SLAM solution for drift-free large-scale indoor
reconstruction. To achieve this, we propose a novel semantically
assisted data association strategy that results in unambiguous
persistent object landmarks and a 2.5D compositional rendering
method that enables reliable frame-to-model RGB-D tracking.
Consequently, we deliver an optimized online implementation
that can run at near frame rate with a single graphics card,
and provide a comprehensive evaluation against state-of-the-art
baselines. An open-source implementation will be provided at
https://github.com/rpl-cmu/object-slam.

I. INTRODUCTION

Autonomous robots that work in the real world require
advanced interpretation of the world, from semantic 3D
reconstruction, path planning, to active interaction with the
environment. These workloads require not only geometric
perception including robot localization and dense scene
reconstruction, but also semantic and compositional under-
standing of scenes.

In recent years, geometry-based SLAM has achieved high
levels of performance in experimental setups for localization
tasks. Many variants of SLAM algorithms, from ORB-
SLAM [1] to Direct Sparse Odometry (DSO) [2], can now
run in real-time with high trajectory accuracy. However, they
are in general limited by the static-world assumption and
low-level scene representation (sparse 3D feature points), and
thus cannot distill high-level information (semantic under-
standing) in scenes and adjust to structured environmental
changes.

On the other hand, with progress in deep learning,
near frame rate semantic perception is achievable powered
by efficient Deep Neural Networks (DNNs). Researchers
have started to switch to semantic SLAM taking advan-
tage of off-the-shelf solutions; pioneering research includes
SLAM++ [3], Fusion++ [4], and MaskFusion [5]. These
initial attempts take into consideration semantic segmenta-
tion, but typically simply attach DNN frontends to existing
SLAM frameworks in an ad hoc fashion. Implementation-
wise, they require high-end machines to achieve near real-
time performance, or are not available to the community.

The authors are with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA {akashsha, weidong,
kaess}@andrew.cmu.edu

This work was partially supported by ARL award W911NF-17-2-0181.

Fig. 1. Reconstruction of fr2 xyz sequence from tum rgbd dataset. Our
pipeline can reconstruct both camera trajectory and object models in the
scene.

To address these problems, we propose a novel modular
solution that concentrates on recognizable persistent object
landmarks. In theory, we derived a compositional and scal-
able object map for robust tracking. In implementation, we
fully exploit the power of the modern GPU-based recon-
struction pipeline [6] and object detection frameworks [7],
to design an efficient architecture for data exchange without
sacrificing the ease of system configuration and build.

Our main contributions in this paper are:
1) A compositional volumetric rendering method that se-

lects objects of interest and reduces memory footprint;
2) A hybrid object association method that combines ge-

ometric and semantic cues to enable drift-free tracking
without an explicit relocalization module;

3) A scalable, modular, and easy-to-use open source sys-
tem that runs nearly realtime.

II. RELATED WORK

In this section we review relevant literature in two aspects:
classical geometry-based SLAM, and the application of deep
semantic object detection in SLAM.

A. Geometry-based SLAM

Problem formulation and pose optimization: Modern
geometry-based SLAM systems can be generally classified
into feature-based and direct methods. Feature-based SLAM
systems [1], [8] usually maintain a collection of sparse 3D
point landmarks corresponding to hand-crafted feature key-
points detected in 2D images. In order to correct accumulated
pose error, i.e., drift, these methods resort to bundle adjust-
ment [9] that jointly minimizes reprojection error between

PointRend

RGBD frames

RGB keyframes

Image transporter Mask interpreter

Frame to Model
Odometry

Object data
association

Compositional
 rendering

Masked keyframes

Scalable Objects

Semantic Segmentation

SLAM
Pose graph
optimization

Fig. 2. System overview: Top shows the deep object segmentation pipeline that runs asynchronously, Masked keyframes from the segmentation pipeline
are used in Data association and map update (shown with red lines). Bottom shows the major stages of the reconstruction system, specifically object models
are used in tracking via compositional raycasting (shown with green lines).

landmarks and 2D keypoints via pose optimization. While
being accurate in estimating trajectory, these approaches only
come with sparse 3D maps that are less interpretable for
visualization and recognition. Direct SLAM [10], [2] on the
other hand, relies on pixel-wise projective data association
between frames for odometry. Given relative poses between
certain keyframes, pose graphs [11] are formulated and opti-
mized to obtain globally consistent poses without landmark
constraints.

Our approach can be regarded as a bridge between the
two approaches. We replace point landmarks with objects
in feature-based SLAM. As a result, since pose constraints
attached to objects can naturally replace reprojection error,
we may directly convert such a landmark-pose constraint
optimization to pose graph optimization (PGO).

Map representation: For dense scene reconstruction, the
volumetric Truncated Signed Distance Function (TSDF) [12]
representation has been adopted and improved in several di-
rect SLAM frameworks. KinectFusion [13] introduced a plain
5123 grid for small scenes and objects. VoxelHashing [14]
designed spatial hashing to scale this data structure to larger
scenes. Similar implementations are available in CPU/GPU
in the modern Open3D framework [15], [6], and we adopt
this representation due to its ease of use.

B. Object instance segmentation and object-based SLAM

Object instance segmentation: In recent years, Region
proposal based Convolutional Neural Networks (R-CNN)
[16] have established themselves as de-facto standards for
object instance segmentation from images. Amongst the lit-
erature, Mask-RCNN [17] and PointRend [7] are the best off-
the-shelf solutions. In this work, we use PointRend [7], which
shows significant improvement over [17] by reformulating
the mask generation as a rendering problem. In essence, this
formulation is consistent with our tracking via compositional
rendering module.

Object-based SLAM: Applying aforementioned DNNs
on 2D images, several works for RGB-D and monocular
SLAM have attempted to incorporate object instance detec-
tion. CubeSLAM [18] and QuadricSLAM [19] fit cuboids

and quadrics, respectively, to detected objects to generate
parameterized object landmarks. While improving the lo-
calization accuracy compared to baselines, these methods
fail to densely map objects. MaskFusion [5] adds labels to
oriented point clouds and supports dense object visualization,
but does not maintain persistent objects globally in a graph.
Fusion++ [4], on the other hand, supports persistent dense
reconstruction from fixed size 643 voxel grids, yet is sensitive
to voxel size tuning and may fail to adapt to objects at
varying scales. Our system utilizes scalable voxel grids that
do not require much tuning to adjust to object scales. With
a seamless CPU to GPU memory transfer implementation,
larger environments can also be handled on-the-go.

III. METHOD

Our pipeline can be divided into typical SLAM compo-
nents and a deep perception module, connected by an object-
based semantic map. Figure 2 provides an overview.

It consists of 5 modules each running in a separate
thread: semantic segmentation, frame-to-model odometry,
object data association and map update, PGO, and com-
positional rendering. Incoming RGB-D frames are initially
processed through semantic segmentation (§III-C) to obtain
instance masks, labels, and semantic descriptors, from DNNs
for keyframes. Then, odometry between the incoming live
frame and the compositional render from the map (§III-E)
is estimated via frame-to-model odometry (§III-B) to obtain
relative poses. Maintained objects visible in the frame are
rendered given the estimated camera pose, and objects are
associated with 2D instance detections to either integrate or
initialize new objects in the global map (§III-C). Separately,
a global factor-graph is updated to optimize the camera
trajectory and object poses (§III-D). The optimized object
poses are rendered to generate a compositional model of the
scene for subsequent tracking (§III-E).

Before we discuss these modules in detail from §III-B to
§III-E, we introduce core concepts and notations in §III-A.

A. Core concepts and notations

A background volume VB is a spatially-hashed voxel grid
on GPU, where small 163 subvolumes are allocated around
observed 3D points. It is created and updated as a temporary
instance for stable tracking. An object volume VOi

is akin to
the background volume, but persistently maintains the object
label, ID, and corresponding object descriptors.

A 3D volume V ’s properties, including surface vertex
positions, normals, and colors, can be mapped to 2D images
given a camera pose T ∈ SE(3) and camera intrinsics
defined as K with ray-casting. We denote such rendered
images by 〈N ,V, C〉 for normal, vertex, and color maps
respectively. They can be associated with input RGB-D
images 〈I,D〉 that consist of color (I) and depth (D) images
via projective closest points.

We use subscripts and superscripts to indicate multiple
coordinate frames used in our pipeline, including Ci for
ith camera, Oj for jth object, and W for background
or world coordinate frame. For instance, 〈NCs

,VCs
, CCs
〉

represents 2D maps rendered from the volumes in the Cs

camera coordinate frame. TW
Oj
∈ SE(3) encodes a rigid

transformation from object j to world. Finally, we denote the
respective measurements between nodes with variable Z.

B. Hybrid frame-to-model odometry

In RGB-D camera tracking, we seek to estimate the relative
camera pose TCt

Cs
given an incoming RGB-D target frame

〈ICt
,DCt

〉 and a source model 〈NCs
,VCs

, CCs
〉 of the scene

rendered by placing a virtual camera at the previous camera
frame Cs.

We accomplish this by minimizing the joint weighted
dense geometric error residual rD and the photometric error
residual rI . The general energy function is formulated as in
[20] by accumulating residual at every point p ∈ R2 with a
valid data association:

E(TCt

Cs
) =

∑
p

(1 − σ)r2
I (TCt

Cs
, p) + σr2

D(TCt

Cs
, p), (1)

Here, we adapt the geometric ICP residual as the point-
to-plane distance between the incoming depth map D and
the rendered vertex and normal map (VCs

,NCs
) as follows,

using the formulation in [13]:

rD(TCt

Cs
, p) =

(
(TCt

Cs
VCs

(p̂)− VCt
(p)

)
· NCt

(p), (2)

where VCt is the vertex map from unprojecting the input
depth image DCt . Additionally, we use a photometric error
residual to improve tracking robustness, which is defined as:

rI(TCt

Cs
, p) = CCs

(p̂)− ICt
(p). (3)

In equations (2) and (3), p̂ is the correspondence of p in the
source frame, and is computed via warping:

p̂ = KTCt

Cs

−1DCt(p)K
−1[p>, 1]>. (4)

It must be noted that the ps are a subset of pixels with valid
object-level data associations detailed in §III-E.

Fig. 3. Qualitative foreground object reconstruction results on RGB-D
Scene 13 sequence.

The energy function in equation 1 is minimized using the
Gauss-Newton algorithm. We implement the minimization
in a coarse to fine scheme using an image pyramid, on
the GPU in parallel since each pixel acts independently in
the energy function using reduction with appropriate thread
conflict handling as described in [6].

C. Object instance segmentation and association

2D instance segmentation: Object detection and instance
masks are generated every nth frame (we choose n = 10) in
a separate thread from the PointRend backend. PointRend
uses a Resnet-50-FPN backbone network to generate a
convolutional feature map. In particular, after an empirical
evaluation, we found that PointRend provided better masks
over Mask-RCNN.

The semantic segmentation module maps incoming RGB
frame I into a set of object labels [l1, . . . lk], a set of binary
object masks M i

n defined over l ∈ L , {0, . . . , Lmax − 1}
object classes (Lmax = 80 in the MS-COCO dataset),
bounding boxes b ∈ N4, and a probability distribution
p(li | I). We also extract the object feature map for
the accepted object proposals, from the penultimate fully
connected layer of the R-CNN from the object classifier
head. We observe that these feature maps provide us with
robust data association in ambiguous situations. To obtain
instance segmentation for frames not sent to the DNN, we
warp the binary mask images from the most recent frame
with a segmentation and fill the holes in the warped masks
using the flood fill algorithm.

Once the current camera pose and the semantic segmenta-
tion information are available, instance detections are asso-
ciated with existing objects. Unmatched instance detections
are used to initialize new object volumes.

3D instance generation: When an unmatched object is to
be instantiated, the masked depth frame at Ci is unprojected
and transformed into the world frame to obtain the object
point cloud:

XW = TW
Ci
K−1DCi

(p)[p>, 1]>. (5)

To obtain relatively high fidelity reconstruction, we adap-
tively calculate a conservative voxel length of

l = γ‖max(XW)−min(XW)‖∞, (6)

where min,max operators are applied to all dimensions of
X ∈ R3 simultaneously. We empirically use γ = 1/64

√
2,

Fig. 4. Reconstructed small indoor scene RGB-D Scene 12. We first show an example input RGB frame followed by a top-down view of the reconstruction
from MaskFusion. This is followed by result from our pipeline. Note that in our reconstruction background walls and floor are filtered out.

but due to the scalability of the volume our model is less
sensitive to γ. Finally, the object pose is simply chained by

TW
O = TW

Ci

(
TO

Ci

)−1

, (7)

where TO
Ci

= [I | tOCi
] with tOCi

= min(XW) − tWCi
. Each

new object is also initialized with the object feature map
from its corresponding instance mask.

2D–3D semantic data association: To associate existing
object volumes to 2D instances, visible objects are rendered
(in §III-E) in the current frame. The rendered color map C is
thresholded to obtain a virtual binary mask. An intersection
over union (IoU) between the virtual binary mask M̂ and the
instance masksMi in the current frame is used as a scoring
metric as defined in [4].

As opposed to computing the argmaxi IoU(Mi,M̂), we
associate objects as given below:

i = argmin
i∈S

(‖fi − f̂‖1), (8)

where f̂ and fi denote feature map of the object render
(identical to the object in question), and the instance masks
respectively and S , {i : IoU(Mi, M̂) > 0.2}. Associating
object renders to instance masks in this manner prevents
incorrectly fusing object instances between nearby similar
objects, in cases where there is large accumulated drift.

For subsequent fusion of a 2D instance detection to its
associated 3D object, the instance mask—containing the
object foreground—and the bounding box mask—containing
both the foreground and background are used. Similar to
[4] we integrate the object in both the foreground and
background through a weighted average of TSDF, color, and
additionally maintain binomial foreground-background count
variables for each voxel. This smoothes out artifacts from
integration of 2D instances with spurious masks.

Finally, we update the object feature map by a gated
weight average:

ft =
wt−1 · ft−1 +H(ft−1, fin) · fin

wt−1 +H(ft−1, fin)
, (9)

H(ft−1, fin) =
sgn(λ− ||ft−1 − fin||1) + 1

2
, (10)

where H is the Heaviside step function that hard-filters
outlier input feature map fin compared to the maintained
object feature map ft−1 with weight wt−1 controlled by the
threshold λ.

D. Factor graph optimization

As we have mentioned before, a background volume is
maintained for stable tracking, and to handle objectless
frames. The background volume, additionally maintains the
ratio (r) of visible volume units in the current camera frustum
to the total number allocated volume units in the volume. A
low ratio implies that the camera may have moved away
from a particular part of the scene. Pose graph optimization
is conditionally triggered when the background volume is
reset owing to low ratio of visible units (r < 0.2) and when
there are new objects added into the graph.

Our object factor graph formulation is similar to [3],
[4]. The variable nodes X = {x1, . . .xN} are partitioned
into camera pose variables TW

Ci
∈ SE(3) and object pose

variables TW
Oj
∈ SE(3). The first camera pose is initialized

as the world frame W .
Assuming a Gaussian noise model, the MAP inference

problem with the above variable nodes reduces to solving
the following non-linear least squares optimization:

X ∗ = argmin
X

(∑
k∈|C|

‖ZCk

Ck−1
	TCk

Ck−1
‖2Σk,k−1

+
∑

j∈|O|,k∈|C|

‖ZOj

Ck
	T

Oj

Ck
‖2Σoj,k

)
, (11)

where the operator Y 	 X = Log(X−1Y) expresses the
relative error in the local tangent vector space [21]. Σk,k−1

denotes the covariance between relative camera pose mea-
surements, Σoj ,k is the covariance in the camera to object
measurement. They can be approximated by information
matrices computed from odometry, however, empirically
we found that a constant information matrix can achieve
reasonable results. We obtain the relative camera measure-
ments ZCk

Ck−1
from frame to model odometry (§III-B), and

obtain frame to object measurements Z
Oj

Ck
by performing

an additional Gauss Newton iteration with only the object

Fig. 5. Compositional rendering during reconstruction on TUM
fr3 long office household dataset. Left shows the background render, and
right shows the composed render. Compositionally rendered objects are
shown in bounding boxes.

pixels. Finally, the expected relative camera pose TCk

Ck−1
and

expected camera object pose T
Oj

Ck
used in the factors are

calculated as:

TCk

Ck−1
=

(
TW

Ck

)−1

TW
Ck−1

, (12)

T
Oj

Ck
=

(
TW

Oj

)−1

TW
Ck
. (13)

We solve the optimization in GTSAM [22], using Lev-
enberg Marquardt. Since the entire object volume is trans-
formed as a rigid body, the object volumes remain unchanged
in memory after optimization. We note that this circumvents
the time-consuming re-integration that usually takes place in
volumetric methods after PGO [23].

E. Compositional rendering

Compositional rendering is a serialized operation that
generates normal, vertex, and color maps by ray-casting 3D
objects in the viewing frustum into 2D object instances, and
is illustrated in Figure 5.
〈NCi

,VCi
, CCi
〉 is in fact an aggregation of separate

renderings from object volumes 〈N
VOj

Ci
,V

VOj

Ci
, C

VOj

Ci
〉 and

the background volume 〈N VB

Ci
,VVB

Ci
, CVB

Ci
〉, depending on the

masks. In particular, we render the background volume,
based on a background mask that is constructed from the
union of existing virtual object masks in the current frame,
and associated instance masks.

Then, the composed per-pixel map model render can be
obtained as follows:

k̂ = argmin
k
Vk(p)[z], k ∈ {O1, · · · , On, B} (14)

〈N ∗(p),V∗(p), C∗(p)〉 = 〈Nk̂(p),Vk̂(p), Ck̂(p)〉, (15)

where k̂ is the volume index corresponding to the minimum
distance to camera center for pixel p.

Object volumes not currently visible are downloaded from
GPU into CPU memory. Note that downloading the object
volume does not affect the optimization problem, since
the object volumes are required only for integration and
raycasting.

IV. SYSTEM ARCHITECTURE

To support relatively high frame rate operation in the
presence of slow/non-realtime deep learning components our

pipeline is highly parallelized. Our system adopts the Actor
framework, where each component runs asynchronously, and
communicates via thread-safe queues.

We implement the semantic segmentation pipeline as a
separate python process which serializes the outputs us-
ing protobuf and communicates with the client thread
via zeromq sockets in the Object SLAM pipeline. Since,
instance segmentation is carried out only for keyframes,
typically, the asynchronous python process exits early freeing
GPU memory for larger scene reconstructions.

The GPU code is implemented in CUDA, and we leverage
the Open3D framework [6] for a scalable TSDF implemen-
tation.

V. EXPERIMENTAL RESULTS

In this section, we show that our system achieves compa-
rable results to state-of-the-art online/offline reconstruction
systems in terms of trajectory accuracy while being able to
segment and reconstruct objects. We evaluate on the RGBD
scenes V2 dataset [24] and TUM RGBD dataset [25], both
of which are established RGBD benchmarks and compare
against baselines. Our experiments were run on a Linux
system with Intel i7-6700 CPU at 4.00GHz and 32GB of
RAM and a NVIDIA GTX1080 with 8GB of GPU memory.

A. Qualitative results

We first demonstrate qualitative reconstruction results on
the RGBD scenes V2 dataset. Fig. 3 shows the object
mesh extracted from our scalable volumes with a foreground
count threshold. We can see that small objects are clearly
reconstructed with details, and the background is correctly
filtered.

At a larger scale, Fig. 1 segments teddy bear and comput-
ers from the cluttered scene and ensures a low-drift of the
trajectory. Fig. 4 compares reconstructions from MaskFusion
[5] and our system for a given sequence. It can be seen
that the object-level reconstruction, specifically for caps and
sofas, is much cleaner by our system than by MaskFusion.

B. Quantitative results

Table I presents Absolute Trajectory Error (ATE) of four
different methods compared with our system. Note in the
table, the best results of the object-based systems are in
bold, and provide results from geometric SLAM systems for
reference.

In general, we achieve comparable results against the
state-of-the-art surfel based online SLAM system Elastic-
Fusion [23] and volumetric offline reconstruction system
Open3D [15]. In the meantime, our method outperforms
object-based SLAM systems MaskFusion1 [5] and Fusion++
2[4] by a large margin. This improvement can be attributed
to the use of semantic data association and scalable voxel
grids.

1MaskFusion requires 2 high end graphics cards to run it in online mode.
We ran it in offline mode, and stored all the detected object instances
from the method instead of manually selecting objects of interest for a
fair comparison with our method

2Fusion++ is not open sourced and we obtained the results from the paper.

TABLE I
TRAJECTORY ACCURACY COMPARISON ON REALWORLD DATASET (ABSOLUTE TRAJECTORY ERROR IN CENTIMETERS)

Dataset ElasticFusion Open3D MaskFusion Fusion++ Ours
Online
Object Models
RGBD Scenes - Scene 03 1.42 19.37 26.67 - 4.52
RGBD Scenes - Scene 12 0.64 1.97 10.81 - 2.36
RGBD Scenes - Scene 14 1.09 1.33 8.26 - 2.37
freiburg1 xyz 6.33 6.64 8.68 - 7.50
freiburg1 desk 2.70 5.73 24.05 4.9 5.82
freiburg1 desk2 7.12 7.65 21.5 15.3 9.57
freiburg1 room 22.06 5.65 52.4 23.5 21.7
freiburg2 xyz 1.12 2.18 12.30 2.0 2.27
freiburg2 desk 7.61 4.72 163.6 11.4 9.94
freiburg3 long office 2.23 3.54 140.8 10.8 9.68

(a) (b)

Fig. 6. Comparison of trajectories between our pipeline and baselines
with ground truth. (a) shows rgbd-scenes-v12 and (b) shows rgbd-scenes-
v14 sequences.

For small scenes in the RGB-D scenes V2 dataset, we
achieve consistently high accuracy with ATE below 5cm for
all scenes. Figure 6 shows detailed trajectory visualizations.

For larger scenes, although noisy semantic segmentations
affect masks and introduce noise for frame-to-model odom-
etry, compositional rendering still ensures reliable tracking.
Trajectory comparisons are provided in Figure 7.

C. Runtime analysis

For runtime evaluation of our system we limit the number
of initialized objects in the scene to 10 to ensure (close to)
online performance on the aforementioned scenes. Process-
ing each frame in the absence of any objects i.e., only back-
ground tracking takes about 200ms per frame. The largest
computational bottleneck and time consuming operation is
the rendering step, and while there are multiple rendering
operations required (for instance, during object association),
we render the objects and background only once per frame,
and reuse the renders. We observe that each object takes on
average about 45ms to render. In the presence of about 5-
8 objects in the scene, the time taken per frame increases
to about 450ms (200ms for background + 250ms for object
renders) per frame. In comparison, we observed in our tests
that MaskFusion runs at lower than 1FPS with one graphics
card and suffers from random crashes in online mode.
Fusion++ reports its results with pre-computed segmentation
masks. Our method runs seamlessly on a single GPU. A
detailed runtime analysis is given in Table II.

TABLE II
RUNTIME BREAKDOWN COMPONENT-WISE FOR OUR PIPELINE

Component Tracking Segmentation Association Rendering
Time (ms) 13 250 15 45 per object

(a) (b)

Fig. 7. Trajectory comparisons on the TUM-RGBD dataset (a)
fr3 long office household and (b) fr2 desk sequences showing that even
in the absence of explicit loop closures, our system maintains comparable
accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Compositional and Scal-
able Object SLAM, which bridges geometry-based tech-
niques effectively with deep object detection. The system
maintains persistent independent 3D models of the objects
visible in the scene, which provides for relatively accurate
trajectories as well as object reconstructions.

While our system makes significant progress towards
semantic SLAM, it is not perfect owing to the following
shortcomings. 1) TSDF inpainting is not considered, causing
partially reconstructed objects; the system slows down sub-
sequently with increasing map size, albeit at a slow rate. 2)
Object labels are limited to 80 classes from the MS-COCO
dataset; 3) Finally in the presence of instance switches of
detected objects across time and missed detections of small
objects, tracking accuracy is affected.

Solving these shortcomings provide avenues for interesting
future work. In particular, we plan to introduce object model
based reconstructions and neural rendering for better object
reconstructions.

REFERENCES

[1] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and RGB-D Cameras,”
IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–
1262, Oct. 2017, arXiv: 1610.06475. [Online]. Available: http:
//arxiv.org/abs/1610.06475

[2] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[3] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly,
and A. J. Davison, “SLAM++: Simultaneous Localisation and
Mapping at the Level of Objects,” in 2013 IEEE Conference
on Computer Vision and Pattern Recognition. Portland, OR,
USA: IEEE, Jun. 2013, pp. 1352–1359. [Online]. Available:
http://ieeexplore.ieee.org/document/6619022/

[4] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,
“Fusion++: Volumetric object-level SLAM,” in Proc. of International
Conference on 3D Vision. IEEE, 2018, pp. 32–41.

[5] M. Rünz, M. Buffier, and L. Agapito, “MaskFusion: Real-Time
Recognition, Tracking and Reconstruction of Multiple Moving
Objects,” Apr. 2018. [Online]. Available: https://arxiv.org/abs/1804.
09194v2

[6] W. Dong, J. Park, Y. Yang, and M. Kaess, “GPU accelerated robust
scene reconstruction,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 7863–7870.

[7] A. Kirillov, Y. Wu, K. He, and R. Girshick, “PointRend: Image
Segmentation as Rendering,” arXiv:1912.08193 [cs], Feb. 2020, arXiv:
1912.08193. [Online]. Available: http://arxiv.org/abs/1912.08193

[8] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality, 2007, pp. 225–234.

[9] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms. Springer, 1999, pp. 298–372.

[10] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale
direct monocular SLAM,” in European conference on computer vision.
Springer, 2014, pp. 834–849.

[11] F. Dellaert and M. Kaess, “Factor Graphs for Robot Perception,”
Foundations and Trends in Robotics, vol. 6, no. 1-2, pp.
1–139, 2017. [Online]. Available: http://www.nowpublishers.com/
article/Details/ROB-043

[12] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual

conference on Computer Graphics and Interactive techniques, 1996,
pp. 303–312.

[13] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
Proc. of IEEE International Symposium on Mixed and Augmented
Reality. IEEE, 2011, pp. 127–136.

[14] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger, “Real-time
3D reconstruction at scale using voxel hashing,” ACM Transactions
on Graphics, vol. 32, no. 6, pp. 1–11, Nov. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508363.2508374

[15] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern Library
for 3D Data Processing,” arXiv:1801.09847 [cs], Jan. 2018, arXiv:
1801.09847. [Online]. Available: http://arxiv.org/abs/1801.09847

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[18] S. Yang and S. Scherer, “CubeSLAM: Monocular 3-D object SLAM,”
IEEE Transactions on Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[19] L. Nicholson, M. Milford, and N. Sünderhauf, “QuadricSLAM: Dual
Quadrics From Object Detections as Landmarks in Object-Oriented
SLAM,” IEEE Robotics and Automation Letters, vol. 4, no. 1, pp.
1–8, 2019.

[20] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored Point Cloud Registration
Revisited,” in 2017 IEEE International Conference on Computer
Vision (ICCV). Venice: IEEE, Oct. 2017, pp. 143–152. [Online].
Available: http://ieeexplore.ieee.org/document/8237287/

[21] J. Sola, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.

[22] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” in
Technical Report, 2012.

[23] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[24] K. Lai, L. Bo, and D. Fox, “Unsupervised feature learning for 3D
scene labeling,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), May 2014, pp. 3050–3057, iSSN: 1050-4729.

[25] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 573–580.

http://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1610.06475
http://ieeexplore.ieee.org/document/6619022/
https://arxiv.org/abs/1804.09194v2
https://arxiv.org/abs/1804.09194v2
http://arxiv.org/abs/1912.08193
http://www.nowpublishers.com/article/Details/ROB-043
http://www.nowpublishers.com/article/Details/ROB-043
http://dl.acm.org/citation.cfm?doid=2508363.2508374
http://arxiv.org/abs/1801.09847
http://ieeexplore.ieee.org/document/8237287/

	Introduction
	Related Work
	Geometry-based SLAM
	Object instance segmentation and object-based SLAM

	Method
	Core concepts and notations
	Hybrid frame-to-model odometry
	Object instance segmentation and association
	Factor graph optimization
	Compositional rendering

	System Architecture
	Experimental Results
	Qualitative results
	Quantitative results
	Runtime analysis

	Conclusions and Future Work
	References

