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Abstract— 3D imaging radar offers robust perception ca-
pability through visually demanding environments due to the
unique penetrative and reflective properties of millimeter waves
(mmWave). Current approaches for 3D perception with imaging
radar require knowledge of environment geometry, accumula-
tion of data from multiple frames for perception, or access to
between-frame motion. Imaging radar presents an additional
difficulty due to the complexity of its data representation. To
address these issues, and make imaging radar easier to use for
downstream robotics tasks, we propose a learning-based method
that regresses radar measurements into cylindrical depth maps
using LiDAR supervision. Due to the limitation of the regression
formulation, directions where the radar beam could not reach
will still generate a valid depth. To address this issue, our
method additionally learns a 3D filter to remove those pixels.
Experiments show that our system generates visually accurate
depth estimation. Furthermore, we confirm the overall ability
to generalize in the indoor scene using the estimated depth for
probabilistic occupancy mapping with ground truth trajectory.
The code and model will be released1.

I. INTRODUCTION

One of the reasons for recent successes in simultane-
ous localization and mapping (SLAM) systems is a thor-
ough understanding of the sensors used for sensor fusion.
Consequently, modern state estimation systems rely on a
standard suite of sensors that includes visual, inertial and
laser based sensors, sparing a few exceptions such as the
Doppler velocity log (DVL), and thermal cameras in specific
applications such as underwater and subterranean naviga-
tion [15], [35]. Unlike vision and LiDAR sensors that are
impacted by low lighting and smoke, the radar system is
robust in both extreme weather conditions in the outdoor
and visually degraded indoor environments, while uniquely
providing relative velocity information [9].

There exists a plethora of work [3], [30], [1] that explores
the spinning frequency modulated continuous wave (FMCW)
radar pioneered by the Oxford RoboCar dataset [23] with
success in automotive applications. In contrast, there are
still relatively few works that consider the potential of the
medium range imaging radar. Compared to spinning FMCW
radars used in the automotive settings, medium range system-
on-chip imaging radars have features that are appealing espe-
cially for indoor environments. They provide 3D information,
are lightweight, less expensive, have a smaller form factor,
and require lower power to operate. This makes them suitable
for vehicles with limited carrying and power capacity that are
commonly seen in indoor scenarios [16].
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Fig. 1. An example of reference LiDAR depth map (top row) and inferred
radar depth map (second row), with their view point marked on the map
(black bounding box). Occupancy mapping using inferred radar depth map
(yellow), compared with that of LiDAR depth map (blue) demonstrates
overall ability to generalize in the indoor scenario. Ceiling and floor removed
for visual clarity.

Imaging radar however, has distinct characteristics that
make it difficult to work with. Beyond the noisy measure-
ments typically observed in spinning radars, since the angular
information of detected targets is resolved through antenna
arrays, the antenna placement affects the resolution and
accuracy of the angular dimensions asymmetrically. Fig. 2 is
an example comparison between the radar heatmap obtained
post analog to digital converter (ADC) and the LiDAR
measurement. It illustrates that the radar is not only unable
to resolve azimuth direction with clarity, but also provides no
clear association along the elevation axis: all range-azimuth
slices at different elevations are nearly indistinguishable.

Classically, the next phase is a target detection approach
through a detector such as the constant false alarm rate
(CFAR) [8] or its variants. These methods filter the heatmap
into a sparse set of point targets by detecting peaks based
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Fig. 2. Illustration of noise in elevation and azimuth axis. Connected
circles denote correspondence between figures. (a) Radar intensity volume
backprojected to Euclidean space (plasma colormap), and corresponding
LiDAR scans in blue. Radar measurements only corresponding to the center
elevation slice in the intensity volume are visualized. (b) Radar intensity
volume in native spherical coordinate system. Consistent measurement in
elevation axis shows the inability to resolve elevation angle with clarity.
Elongated region along azimuth axis shows the difficulty in resolving
accurate azimuth angle. (c) Reference LiDAR depth map. (d) Radar depth
map obtained from the depth reading at highest radar returns along the range
axis on the original intensity volume.

on an estimate of local noise. While this reduces the di-
mensionality of the observation drastically, a substantial
amount of potentially valuable information is thrown out.
Target detection also requires manual tuning of parameters to
identify targets correctly. In contrast, we utilize information
in the radar intensity volume to produce a dense estimate
that addresses the aforementioned issues.

In particular, we present a learning-based method that
regresses a dense depth map from the intensity volume of
4D imaging radar data. Our main contributions are two-fold:

1) A learned method for inferring a depth map for single
frame imaging radar in a generalized indoor scene using
LiDAR supervision.

2) We demonstrate the effectiveness of our method through
the downstream tasks of 3D occupancy mapping, and
body frame velocity estimation. An example mapping
result is shown in Fig. 1.

Additionally, our method shows the potential for presenting
3D imaging radar in the form of more popular sensors in
robotics. Following a literature review in Section II, we
present and discuss our method in Section III. Finally, we
provide experiments results of both depth map regression,
and mapping in Section IV.

II. RELATED WORK

A. Radar Imaging Systems

There exist several well-established close-range mmWave
imaging radar systems and datasets [11], [24], [29] They
demonstrate high resolution radar imaging, however, they
only operate over very short ranges, or require a bulky sensor
setup and radar absorbing materials in the background, mak-
ing them impractical for navigation tasks. Another approach

is to utilize motion to simulate a synthetic aperture radar
[28], [26], [25]. While the results are promising, especially
in the case of MilliPoint where accurate elevation information
is also available as an output, one shortcoming of these
methods is that the resulting imaging depends on multiple
observations, which poses difficulty for tasks when accurate
motion information is not readily available.

Recently, works have leveraged deep learning in the con-
text of mmWave radar data. One line of work addresses
radar-camera fusion using automotive spinning FMCW
radars [20], [10], [21], while others show reasonable success
in learning human poses from radio frequency (RF) signals
[34], [33] or filtering information from classical detectors
[19]. Most notable is the application of a conditional gen-
erative adversarial network (cGAN) for imaging radar depth
estimation proposed in [12], [27]. These methods achieve im-
pressive results for depth map inference from radar intensity
volumes, however both methods are specialized for single
class single object estimation, and the method scales poorly
when multiple instances of the trained object are seen in
the input image. Their ability to generalize to more generic
scenes is questionable.

B. Learned Depth Estimation from Images

Learning-based methods are capable of fitting the function
between camera images and their corresponding depth maps
[2], [18]. In terms of formulation, our work is closely related
to depth refinement since the radar intensity volume can be
considered as a coarse estimate of depth. However, we find
that depth refinement is typically a subtask in monocular
or multi-view stereo depth estimation [32], [31], where
the objective is to remove and smoothen artifacts around
contours of similar depths. Such refinement processes have
access to RGB images that innately encode high-frequency
features such as boundaries and edges, providing excellent
local information for regression and smoothing of pixel
depth, unlike radar. Additionally, due to the noisy nature of
resolving angle of arrival from targets in the imaging radar,
it is common for multiple peaks to reside along the same
single beam of direction due to the noise of multiple adjacent
targets. It should be noted that these are not multi-path
reflections. Such a characteristic sensor model complicates
leveraging structure, such as the association of features or
recognition of structures,

It is also well-known that radar has very different pene-
tration and reflection characteristic from laser and camera
sensors [9]. Therefore, ground truth generation for radar
is not a straightforward process for learning, and is either
difficult, reliant on synthetic data, or assumes that laser
measurements are the ground truth.

C. Mapping with Radar

Limited range and angular resolution, multi-path reflec-
tions, and sparse measurements present challenges for 3D
mapping using radar. One approach uses handcrafted prior
knowledge of environment geometry, such as corridor width,
to filter radar measurements [5]. With accurate odometry, and



Fig. 3. 3D convolutional network architecture for depth regression and out-
of-range classification. The network has a U-net structure for the primary
section of the network. The classification has kernel and stride sizes designed
to reduce the range dimension to 1.

good knowledge of the environment, occupancy grids can
be built from sparse targets, however these assumptions are
rarely true when operating in a visually degraded environ-
ment.

Another approach to tackle mapping is to learn a deep
model that generates a dense map given a set of radar
detections. MilliMap [22] stitches multiple frames of scans
from a single-chip mmWave radar together in the form of 2D
occupancy grids, and uses a conditional GAN to complete
the map. While it shows promising results, collecting the
large amount of training data required is very costly.

Recent work has shown significant progress and potential
in using mmWave imaging radar for robot perception, yet the
challenge of extracting dense 3D information from a single
frame of radar data has not been sufficiently tackled. This
motivates our work to create a system that allows for single
frame 3D perception for imaging radar, enabling application
of imaging radar for robot navigation tasks.

III. METHOD

We propose a 3D convolution based supervised regression
model for the task of depth estimation. This section describes
the detailed architecture of the proposed network and the data
representation used for input and supervision.

A. Data Representation

The measurements from mmWave radar has four dimen-
sions: range, azimuth, elevation, and with the last dimen-
sion consists of intensity and velocity. From this 4D heat-
volume, we use the 3D per-voxel intensity as our input.
Since radar measures environment by range and angle, this
representation is natively in the 3D spherical coordinate
system of (r, φ, θ) (range, azimuth, elevation). We assume

that laser measurements are a good proxy for the true radar
measurements, even though mmWave radar has different
penetrative characteristics than laser sensors.

There are several ways to formulate radar-laser supervi-
sion. One formulation would be to backproject radar points
into their Euclidean coordinate representation and then clas-
sify individual points. [4]. However due to the spherical
coordinate system, adjacent points in the intensity volume
grow farther apart with increasing range, which makes it
difficult to capture local relationships which should be in-
variant to the range value. This is made worse with the spare
resolution. Second, it is also possible to construct an occu-
pancy volume in the same spherical coordinate system from
LiDAR measurements. Adopting a depth map formulation
retains local relationships, and is a simpler representation
of the sensor model. Compared to the volumetric or unpro-
jected points, the depth map representation loses the ability
to distinguish between multiple detections along the same
angular orientation, that could be caused by multi-path or
behind-the-wall detections. However in the context of indoor
mapping, with the detection range of medium range imaging
radar at multiple-input multiple-output (MIMO) mode at less
than 8m, this loss of representation does not lose significant
information.

The ground truth depth maps are generated by projecting
LiDAR scans into a cylindrical depth map. To avoid choppy
images caused by calibration issues, we utilize the formula-
tion introduced in [6]. The radar intensity volume is further
cropped to have a similar vertical field of view (FoV) as
LiDAR.

B. System Overview

The system comprises primarily of two sections, a depth
map regression model and an out-of-range pixel classification
model. This pixel classification model accounts for two
shortcomings in the radar based regression: 1) a significant
number of pixels in the depth map are often out of the radar
detection range, due to the relatively short range of imaging
radar and 2) large noise in the angular coordinates requires
the use of local information (convolution) to discriminate a
false return due to targets in adjacent region from a true radar
return. The network architecture is illustrated in Fig. 3.

C. Depth Map Estimation

The depth map regression takes heavy intuition from cell-
averaging CFAR, which could be viewed as a rectangular
filter. However, the parameter tuning for CFAR is time-
consuming and hard to evaluate due to the sparse spatial
resolution. We recognize the similarity between CFAR and
convolution, and the success in learning-based reconstruc-
tion, especially in [32] where the feature points are collected
into a cost volume trained to generate a probability volume
for the estimated depths. We adopt a probabilistic view where
the raw intensity volume observed are noisy measurements
from which, an underlying true depth can be estimated.

With that intuition, we use a multi-scale 3D convolutional
backend for depth regression. We use skip connections to



link earlier convolutional blocks to the deconvolution layers,
batch normalization and ReLU activations for the deconvolu-
tion layers. The last deconvolution layer outputs a 1-channel
3D volume.

We define range, azimuth, and elevation angle bin r,θ,φ
of the radar measurement volume and note the original
intensity volume as VI and output volume at the last
deconvolution layer P, {VI ,P} ∈ R|r|×|θ|×|φ|. To preserve
differentiability, we compute the 2D image Ir ∈ R|θ|×|φ|
through soft argmax that computes the expected value given
the distribution

Ir(θ, φ) =

|r|∑
r=0

r(r)P(r, θ, φ) (1)

D. Out-of-range Invalid Points

The true radar depth map is limited by the range of
space covered by P. Therefore there are depth values in
Ir that should be returned as out of bounds. While we do
observe a positive correlation between the standard deviation
of probability along the depth axis in P for the out-of-range
pixels, the high false positive and true negative rate requires a
more intelligent processing method. Other methods such as
photometric confidence proposed in [32], which calculates
the confidence in prediction based on the surrounding values
of the maxima, were also experimented on to no significant
success.

The task here is to reduce R|r|×|θ|×|φ| to R|θ|×|φ| while
maintaining invariance to the position of values along the
depth dimension. We propose to use consecutive 3D con-
volutional blocks with strides and kernel sizes that incre-
mentally reduce the dimension along the depth axis while
maintaining the dimensions for azimuth and elevation. Each
block has eight channels with batch normalization and ReLU
as activation function. The last layer outputs an image for
pixel-wise classification Ic ∈ R2×|θ|×|φ|.

E. Loss Function

The loss function considers both the classification of out-
of-range pixels and depth regression. We only consider in-
range pixels for the depth estimation task.

Loss = lBCE(Im, Ic) +
∑

p∈Il<rmax

ψ (Il(p)− Ir(p)) (2)

Here p ∈ Il < rmax denotes the set of pixels that are
within maximum range of r, Il the LiDAR ground truth,
Im ∈ R2×|θ|×|φ| the ground truth map for in-range and out-
of-range pixels. ψ denotes Huber robust cost [14] function
to account for situations where radar measurements detect
significantly different objects from LiDAR. lBCE is the binary
cross entropy loss.

IV. EXPERIMENTS AND EVALUATION

We evaluate our method on the publicly available
mmWave imaging radar dataset ColoRadar [16]. The dataset
provides data from an IMU, LiDAR, a Texas Instruments
(TI) cascaded imaging radar (AWR2243) operating in MIMO
mode, and a single chip radar (AWR1843). The dataset

contains sequences through both indoor and outdoor envi-
ronments as well as ground truth trajectory generated from
LiDAR-inertial SLAM methods.

Specifically, we train and test in the ec hallways and
arpg lab sequences. These two scenarios are representative
of an ordinary building as they travel through corridors and
large rooms. The sensor rig performs quadrotor-like motion
during data recording. We train the network on sequence 2 of
ec hallways and test on the rest of the sequences. Sequence 3
of ec hallways is omitted due to a ~20s duration of dropped
radar frame in the middle of the run. Training is performed
on an NVIDIA RTX2070S with a batch size of 16 for 150
epochs using Adam optimizer.

A. Depth Map Estimation and Out-of-Range Classification

1) Depth Estimation: We qualitatively show our outputs
in Fig. 4, where we compare the LiDAR and inferred radar
depth map, the unprojected points of both LiDAR and radar
depth map, and the original VI . Our method generates depth
maps that are visually consistent with LiDAR ground truth.
As a baseline, our method can capture visually significant
peaks in the original radar volume such as pillars marked in
the green bounding boxes. Most significantly, it can capture
ceilings and floors that are almost unperceivable from the
original radar volume, as marked by the two elongated blue
bounding boxes on the depth map.

We use metrics commonly seen in the monocular depth
estimation literature to evaluate the depth map results [7].
We provide a brief summarization in Table I. The quantitative
results are summarized in Table II. For the metrics, ↑ shows
higher is better, and vice versa.

arpg lab runs score lower overall performance than
ec hallways. This is expected since there could be overlaps
between the training sequence 2 and the rest of ec hallways
sequences. However, since arpg lab catches up to the perfor-
mance of ec hallways when threshold δ value increases from
1.25 to 1.252, the degradation in performance is relatively
local.

2) Out-of-Range Classification: In this section, we com-
pare the quantitative results for the out-of-range pixel classi-

TABLE I
DEPTH EVALUATION METRICS

Abs rel: 1
|T |

∑
y∈T

|ỹ−y∗|
y∗ RMSE:

√
1
|T |

∑
y∈T ||ỹ − y∗||2

Sqr rel: 1
|T |

∑
y∈T

||ỹ−y∗||2
y∗ Thr: % y 3 max( ỹ

y∗ ,
y∗

ỹ
) = δ < thr

TABLE II
QUANTITATIVE RESULTS ON DEPTH ESTIMATION

Error (↓) δ Threshold, (↑)
Abs Rel Sqr Rel RMSE 1.25 1.252 1.253

EC 0 0.2057 0.3197 1.1216 0.7004 0.881 0.9491
EC 1 0.2097 0.2878 0.9916 0.6996 0.8929 0.9593
EC 4 0.2407 0.3895 1.2138 0.6439 0.8441 0.9299
Arpg 0 0.2646 0.4266 1.3312 0.5447 0.8084 0.92
Arpg 1 0.2664 0.4324 1.3222 0.5555 0.8043 0.9118
Arpg 2 0.2723 0.4362 1.3391 0.5332 0.7864 0.9098
Arpg 3 0.2635 0.3989 1.2288 0.5691 0.8196 0.9267
Arpg 4 0.2595 0.4077 1.2612 0.573 0.8246 0.924
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Fig. 4. Qualitative performance on indoor scenarios. The first row shows LiDAR depth maps, the second row shows inferred radar depth maps. Brighter
is farther. The third row contains unprojected points and raw radar intensity volume. In the unprojected points figure, LiDAR points are colored blue, radar
points are colored yellow. The original density of LiDAR points are used for better visualization of the scenario. In the radar intensity volume, brighter
indicates higher intensity. Bounding boxes indicates correspondence between images: green bounding boxes show estimations that are visible in the raw
radar volume; blue bounding boxes indicate environment features that are difficult to perceive in the raw radar volume. The figure shows that our method
is able to generate visually accurate results, and capture floors and ceilings that are barely visible in the original intensity volume.

Fig. 5. From top to bottom: Mapping using LiDAR depth map limited to radar FoV; Mapping using inferred depth estimation of radar; Mapping using
CFAR but only the first peak along each beam of direction. All of the maps have ceiling removed naı̈vely by thresholding over 0.8m; the floors exist at
around −0.8m. For the radar maps, darker denotes lower z value. Therefore brighter color usually denotes walls, and large portion of dark region indicates
floors. Mapping using CFAR results in noisier maps due to the sparse nature of the detector and the false positive detections that appear independent of
adjacent structures.



fication. This process is analogous to the depth map filtering
process in many learning-based multi-view reconstruction
methods. We compare our method against the photometric
confidence method described in [32], as well as standard
deviation for a conventional statistical measure. F-score is
used to evaluate the performance. The quantitative results are
summarized in Table III. Our 3D convolution based method
achieved improved F-scores due to its ability to utilize local
information to determine if a pixel is truly out of range.

3) Failure Cases: Fig. 6 shows typical failure cases of
our method. In the red-bounding box, LiDAR measurements
penetrated through glass and registered the wall behind the
glass, while radar has its measurements absorbed by the
glass, resulting in a noisy output that cannot be rejected
through the classification model since the output does not
match the typical out-of-range characteristics. While failing
to register the glass presents a potential danger for navigation
tasks from the LiDAR side, radar also fails to detect the
glass with clarity. It would be an interesting future work to
enable the current system to understand different material
properties as [22] did. The blue bounding box is a situation
where our methods generated significantly noisier estimates.
These situations typically happen when viewing doors from
close-range. We suspect it is caused by a combination of
noisy close range measurements and the complex reflection
path formed by the angles of door frames when in close
range.

B. Mapping Using Radar

In this section, we provide qualitative results for the overall
depth map estimation through 3D occupancy mapping using
ground truth poses provided in the dataset. Occupancy map-
ping is performed using OctoMap [13] with cell resolution
0.1m and default parameters for occupancy updates. The
ground truth is constructed using the LiDAR depth maps
created earlier for depth estimation supervision. We also
compared our method to the classical CFAR detector. To
adapt to the task of mapping, only the first peak detected
along each beam of direction is taken as the valid detec-
tion. CFAR is unavailable for quantitative comparison in
the earlier Section IV-A.1 due to its sparsity: our method
consistently produces measurements of more than 1k points
per frame, while CFAR produces less than 80. We show
three mapping results from ec hallway sequences. All of
the ceilings of the mapped scene have been removed for

TABLE III
QUANTITATIVE RESULTS ON PIXEL CLASSIFICATION

F-Score (↑)
Seg Pho.Conf std

EC 0 0.7893 0.6294 0.4180
EC 1 0.8311 0.6655 0.3963
EC 4 0.7957 0.6238 0.4088
Arpg 0 0.8204 0.6466 0.4924
Arpg 1 0.8237 0.6513 0.4688
Arpg 2 0.8218 0.6346 0.4832
Arpg 3 0.8314 0.6542 0.4853
Arpg 4 0.8350 0.6716 0.4765

Fig. 6. Examples where the system performed poorly. From top to bottom:
LiDAR depth map, radar depth map, and depth map unprojected into 3D
space. In the unprojected points figure, LiDAR points are painted blue
and unprojected radar points are painted yellow. Connected boxes show
correspondence. The red and blue bounding box shows situations where
our method fails. The yellow structure inside the blue bounding box in
LiDAR depth map is from dangling wires from the sensor rig. Looking
from other view points, the overshadowed part is a door.

better visualization. The result are shown in Fig. 5. Our
method successfully captures a vast majority of the structural
features, with limited coverage of floors. Mapping using
CFAR also results in traces of structural geometry, however
the map is much noisier and less usable for robot navigation
tasks. Additionally, CFAR has a hard time identifying the
correct elevation for a target, which resulted in incorrect
spherical surfaces directly under the xy-plane of the map.

C. Application to Body Frame Velocity Estimation

Additionally, we show that our learning based depth
estimation captures, to some degree, the “real” geometry by
estimating the body velocity through indexing depth map
into the velocity volume provided in the 4D radar data.

For the radar measurement Vv ∈ R|r|×|θ|×|φ| where
Vv(r, θ, φ) measures the velocity of the target relative to the
sensor along the beam that crosses the sensor origin, with
orientation defined by (θ, φ). Note that the velocity volume
contains noise large enough that it cannot be used to filter
invalid voxels in VI even when given a good body velocity
estimate. However, when given an estimate of sensor frame
velocity vs, the error can be calculated as the following per
[17], where pv are valid radar detections:

e =
∑

{r,θ,φ}∈pv

Vv(r, θ, φ) + v>s

(
t(r, θ, φ)

||t(r, θ, φ)||

)
(3)

t(r, θ, φ) = [x, y, z]> = r

cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)





TABLE IV
RMSE FOR BODY FRAME VELOCITY ESTIMATION

RMSE (m/s) (↓)
Seq #0 Seq #1 Seq #4

vx 0.5674 0.5915 0.4923
vy 0.1796 0.2525 0.1838
vz 0.2623 0.3406 0.2851

Without loss for generality, we assume that there are enough
measurements for non-degeneracy. We directly solve for
sensor frame velocity through

ṽs = arg min
v∈R3

∑
{r,θ,φ}∈pv

Vv(r, θ, φ) + v>
(

t(r, θ, φ)

||t(r, θ, φ)||

)
,

(4)

in the form of arg minx ||Ax − b||2 and the covariance is
calculated as:

Σ =
(
A′>A′/||pv||

)−1
, A′ = A/(vresoln/

√
12). (5)

We can now assemble pv by bitwise masking Ir with Ic
and calculate the sensor frame velocity. We compare radar-
inferred body frame velocity with inferred ground truth
velocity through RMSE in Table IV.

In all of the sequences, the primary motion is around
1.2m/s in the y-axis with fluctuations. Radar experiences
the largest error along the x-axis due to the poorer angular
resolution as it gets closer to the lateral axis. We argue that
since velocity is not part of the learning problem formulation,
yet the velocity obtained from the learning outcome closely
matches the true body velocity, it implies there exists some
degree of learning of true geometry in obtaining dense radar
measurements.

V. CONCLUSION

In this work we present a learning-based method for
imaging radar perception. We formulate the output of radar
measurements as cylindrical depth maps with LiDAR su-
pervision. A pixel-wise classification module is created to
filter out out-of-range measurements. We test our method on
a publicly available mmWave radar dataset and show visu-
ally meaningful results. While the raw ADC measurement
from radar still encode much information such as material
property, our work shows the potential to convert the noisy
intensity volume of 4D radar measurements into a standard
depth map formulation with acceptable fidelity without any
fine-tuning. This conversion shows the possibility of a unified
radar data representation for navigation. In future work, we
plan to explore techniques that enables imaging radar to be
a more capable standalone sensor for navigation, as well as
the ability to understand material property.
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