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Figure 1: We present Sparsh, a family of general touch representations, and TacBench, a standardized
benchmark consisting of six touch-centric tasks ([T1]-[T6]) covering prominent problems in vision-based
tactile sensing. In evaluation (middle), we find Sparsh trained with self-supervision on a dataset of 460k+ tactile
images to generalize across tasks (right) and sensors (left) outperforming task and sensor specific models (E2E).
[T1]-[T5] and [T6] are trained with 33% and 50% of the labeled data respectively.

Abstract: In this work, we introduce general purpose touch representations for
the increasingly accessible class of vision-based tactile sensors. Such sensors have
led to many recent advances in robot manipulation as they markedly complement
vision, yet solutions today often rely on task and sensor specific handcrafted
perception models. Collecting real data at scale with task centric ground truth
labels, like contact forces and slip, is a challenge further compounded by sensors
of various form factor differing in aspects like lighting and gel markings. To tackle
this we turn to self-supervised learning (SSL) that has demonstrated remarkable
performance in computer vision. We present Sparsh, a family of SSL models
that can support various vision-based tactile sensors, alleviating the need for
custom labels through pre-training on 460k+ tactile images with masking and
self-distillation in pixel and latent spaces. We also build TacBench, to facilitate
standardized benchmarking across sensors and models, comprising of six tasks
ranging from comprehending tactile properties to enabling physical perception and
manipulation planning. In evaluations, we find that SSL pre-training for touch
representation outperforms task and sensor-specific end-to-end training by 95.1%
on average over TacBench, and Sparsh (DINO) and Sparsh (IJEPA) are the most
competitive, indicating the merits of learning in latent space for tactile images.
Project page: https://sparsh-ssl.github.io/
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1 Introduction
Touch comes before sight, before speech. In today’s AI landscape, this Margaret Atwood quote
is playing out in reverse despite touch being a crucial modality for humans to physically interact
with the world. Touch provides a direct window into information like forces and contact during
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hand-object interactions, enabling dexterity. Vision-based tactile sensors [1, 2, 3, 4] have emerged
as the leading form factor capable of capturing images of physical interactions at the sensor-object-
environment interface, often inaccessible through vision. These images contain properties such
as contact geometry, texture, and forces and have been leveraged across tasks like insertion [5, 6],
pushing [7], grasping [8], localization [9], and pose and shape estimation [10, 11].

The prevailing approach to incorporating vision-based tactile sensors in robot tasks is to train custom
models using labeled data [6, 12, 13, 14] to estimate useful states. However, this can be inefficient
and results in repeated effort across different type of sensors like GelSight 2017 [1] (with markers)
and DIGIT [3] (without markers) or different variety of tasks. For example, feature extractors
trained on GelSight with markers may not transfer to other sensors, and encoders optimized for
texture recognition [15] may not be suitable for tasks that require reasoning about forces or slip [16].
Supervision for building large general models is prohibitive as collecting large scale real world
data with ground truth labels is challenging. For instance, properties like forces [17] and slip [18]
require careful and expensive instrumentation in lab settings, while other properties like tracking
deformations [19] or extrinsic contact [6] can be infeasible. To address this fragmentation in the
literature across custom solutions, there is a need for touch representations that are broadly applicable
to many tasks and many sensors, along with a benchmark of standardized tasks useful in measuring
progress. Taking inspiration from self-supervised learning (SSL) methods in computer vision, we
extend these approaches to the tactile sensing domain and build a benchmark for evaluation (Figure 1).

In this work, we introduce a family of touch representations for vision-based tactile sensors trained
with SSL. Specifically, we provide a recipe to adapt masking-based objectives from computer vision
to the tactile domain, and train general-purpose touch encoders by curating a new Touch-Slide dataset
and existing datasets of tactile images (Figure 2), namely YCB-Slide [9], Touch-and-Go [20], and
ObjectFolder [21]. Pulling together additional unlabeled data points from the existing datasets we
train our models on a total of 460k+ tactile images. Finally, we construct TacBench, a benchmark
consisting of six touch-centric tasks that cover the space of relevant problems on tactile properties
such as force estimation and slip detection, perception such as pose estimation and grasp stability,
and robot manipulation such as policies for solving a bead maze. Our contributions are as follows:
1. General touch representations, Sparsh pre-trained with SSL on 460k+ tactile images,
2. TacBench a benchmark of standardized tasks to evaluate touch representations and models, and
3. Curation of new and existing unlabeled data for SSL, and new labeled data for benchmark tasks.
In evaluations on TacBench, we find that Sparsh with SSL pre-training yield on average 95.1%
improvement over task and sensor specific end-to-end models under limited labeled data budget
(33%-50% of the collected amount) for any task. Additionally, we find Sparsh (DINO) and Sparsh
(IJEPA) to be the most competitive outperforming Sparsh (MAE), indicating the merits of learning in
latent space over pixel space for tactile images.

2 Related work
Self-Supervised Learning with its success in natural language processing and computer vision, has
become the new learning paradigm. In the last three years, a variety of general-purpose frame-
works [22, 23, 24, 25] have been proposed for learning representations. We refer to [26, 27] for
a comprehensive survey on SSL frameworks and their categorization based on pretext tasks and
learning algorithms. In Appendix B, we expand on Masked Image Modeling (MIM), self-distillation,
and Joint-Embedding Predictive Architecture (JEPA), as we explore them in this study.

Traditionally, tactile sensing has relied on preprocessing tools like marker tracking and finite element
method models to extract contact properties, such as shear forces [16, 28], dense normal estima-
tion [29, 28], and contact area prediction [30]. From a learning perspective, a trend is to use custom
encoder architectures tailored for specific tasks and sensors, which are either pre-trained or trained
end-to-end [31, 12, 32, 13, 14, 6, 9]. Nevertheless, there is an increasing interest in representation
learning for vision-based tactile sensors. For instance, MAE has shown effectiveness at material
classification and texture recognition[33]. Fine-tuning convolutional encoders for BioTac, RoboSkin,
and GelSight performs well on fabric decomposition tasks [15]. Even nearest-neighbor retrieval
over pretrained representations – albeit for the XELA [34] uskin sensor – can enable some success
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Figure 2: (a) We curate new and existing datasets of vision-based tactile sensors to train touch representations
by adapting state-of-the-art SSL vision methods to the tactile domain (b) Masked Autoencoder (MAE) [23], (c)
DINO/DINOv2 [48, 49], (d) Image/Video Joint-Embedding Predictive Architecture (JEPA) [50, 51]. ∗Without
need for labels we can sample more images than reported in Touch-and-Go [20] and Object Folder [21].

in dexterous manipulation [35]. Crucially, the current state of standardization in learning touch
representations and the wide variety of tactile sensors available, has made it challenging to develop
and share pre-trained models across the research community in this domain.

Another direction is exploring the alignment of visual and tactile modalities in latent space using
multimodal datasets [20, 36, 37, 38, 8, 39] and techniques like contrastive coding and cross-sensory
retrieval [40, 41, 42], yielding promising results in tasks like material classification, grasp stability,
and tactile-driven image stylization. However, current approaches [40, 43, 44, 42] primarily focus on
texture and visual properties and overlook physical contact properties, such as forces, slippage, and
poses, which are essential for dexterous manipulation.

The works closest and concurrent to ours are T3 [45] and UniT [46]. T3 trains sensor-specific
encoders to capture shared latent information through a shared trunk, using both the MAE objective
and labeled task-specific data as supervision. UniT is a VQGAN [47] model with a patch-based
discriminator for representation learning only for Gelsight mini (markers). On the other hand, we
introduce a family of models trained with the latest SSL algorithms for the three most commonly
used families of tactile sensors: DIGIT, GelSight Mini, and GelSight with markers. As T3 and UniT,
we evaluate the effectiveness of touch representations for policy learning and introduce a standardized
benchmark to comprehensively assess their ability to solve tasks relevant to the tactile community,
such as tactile properties, physical perception, and manipulation planning.

3 Touch representations via self-supervised learning
Current approaches incorporating vision-based tactile sensors in robotic tasks provide custom task
and sensor specific solutions. As highlighted in Section 1 this can be inefficient, and there is a
growing need for general-purpose touch representations that can broadly be more useful. We envision
the following desiderata for such general touch representations, that can a) provide performance
benefits across many tasks including real-time robot manipulation, b) generalize across multiple types
of sensors built on a similar operating principle, like vision-based tactile sensors, and c) improve
performance by leveraging computation and diverse data at scale without the need for manual labels.
Self-supervised learning (SSL) is promising in this regard, as it offers data-agnostic objectives based
on wide-reaching concepts such as analysis-by-synthesis to train generalist models. This motivates
the question of whether vision techniques such as masked image modeling (MIM) [23, 50] and
self-distillation [48, 49] can be extended to the domain of vision-based tactile sensors.

To this end, inspired from advances in self-supervised learning (SSL) in computer vision, we introduce
Sparsh, a family of touch representation trained with SSL across multiple sensors such as DIGIT [3],
GelSight 2017 (with markers), and GelSight mini (without markers) [1]. The tactile domain, however,
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imposes several challenges that impede a straightforward application of SSL approaches from vision
towards touch representations.

Tactile sensors inherently provide local information; thus, images can be ambiguous when observed
independently and can vary across grasp forces, materials, and shapes. Therefore, we investigate
the optimal space for training SSL encoders. Specifically, we are interested in the efficiency of
pixel reconstruction, latent reconstruction, or clustering approaches to learning representations
in the presence of aforementioned ambiguities. We hypothesize that latent reconstruction and
clustering could be more efficient in learning representations, as they focus model capacity away
from fine reconstruction details [52]. Tactile images contain distractors, such as markers and light
placement variations, which can significantly vary due to manufacturing discrepancies. We perform
background subtraction for DIGIT and GelSight mini (markerless) to increase robustness to distractors.
This process implicitly provides the model with a reference to no-contact, conveying static shear
information. We find empirically that background subtraction helps models generalize across the
same type of sensor.

To address the scarcity of labeled and even unlabeled data in the tactile domain that limits the
training of large encoder models, we curate together new and existing vision-based tactile sensor
datasets [9, 20, 21], totaling ∼661k images as illustrated in Figure 2. 70% or 462.7k images
are used for SSL training which is an order of magnitude larger than any prior work on touch
representations [33, 40, 43] (the rest are held out for monitoring training using online probes).

Tokenizing tactile images appropriately for SSL is important because many tasks such as slip detection,
force, and relative pose estimation require temporal reasoning. For SSL methods that operate on
images, we concatenate two tactile images with a temporal stride of 5 samples across the channel
dimension, It ⊕ It−5 → x ∈ Rh×w×6. For a sensor operating at 60FPS, this corresponds to an
inference window of approximately 80 ms, the reaction time that humans need to adjust the grip
force when detecting partial slip [53]. For SSL methods that operate on video (e.g. V-JEPA), we
generate clips with 4 frames at [t, t − 2, t − 4, t − 6] ∈ R4×h×w×3 corresponding to an inference
window of ∼ 100 ms. Currently Sparsh is limited by data streaming rates, and not by inference
time, as the models support inference rates of upto 112FPS (measured on an Nvidia 3080). See
Appendix C for additional details on model architectures and training.

4 TacBench: Tactile sensing benchmark
We introduce TacBench, a collection of touch-centric tasks, and labeled datasets addressing common
issues in vision-based tactile sensing. We assess these tasks using data from various sensors to
evaluate the generalization of pretrained representations, categorized under three main questions.

1. Do the representations comprehend tactile properties? Tactile sensing provides a direct
view into finger-object contact interaction properties like forces and slip that are crucial for robot
manipulation. In Section 5, we evaluate learned representation on estimating instantaneous normal
and shear forces [T1] and visualizing force fields [T1A] [16, 28, 29, 17], and detecting slip [T2] [16,
54, 55, 18].

2. Do the representations enable perception? Tracking and accumulating slip states is essential for
tasks like finger-gaiting and in-hand reorientation [56, 57]. In Section 6, we evaluate the ability of the
representations to track SE(2) pose changes of the object relative to the sensor [T3] [10], prediction
of the stability of a grasp [T4] [8], and textile recognition [T5] [58].

3. Do the representations enable manipulation planning? Pretrained representations can provide
tactile properties to a manipulation policy, improving training efficiency and test performance by
eliminating the need to extract the states from raw sensor data. In Section 7, we design a bead maze
[T6] manipulation problem as illustrated in Figure 3, where the robot using tactile sensing is tasked
to move a bead along a curved wire.

Evaluation protocol. We adopt a frozen evaluation procedure with an encoder-decoder architecture.
Specifically, we freeze the pre-trained Sparsh encoder weights and train the parameters of an attentive
decoder [51, 59] to assess what touch representations have captured from self-supervised pre-training
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alone. All tasks in the benchmark, except force field visualization and policy learning, train an
attentive decoder containing a cross-attention module and a two-layer MLP using labeled datasets
from Table 3. We also include an end-to-end (E2E) baseline with identical model capacity where the
same encoder and decoder probe are initialized with random weights and all the parameters (both
encoder and decoder) are trained. Further, we train downstream decoders with different amounts of
labeled data to evaluate task performance under progressively low labeled data regimes.

In the following sections, we describe the design, metrics and results of each task in TacBench.
Additional details are provided in Appendix D.

5 Comprehending tactile properties
5.1 [T1] Force estimation
Task. Force estimation is defined as the prediction of 3-axis normal and shear forces applied
on the sensor’s elastomer. Figure 3(a) shows our data collection setup. We used three different
indenter shapes to collect force-labeled data: hemisphere, sharp, and flat. Our dataset contains 75k
time-aligned samples of 3-axis force measurements, end-effector poses, and tactile images from
DIGIT at 60fps and GelSight at 25fps. We train the decoder using normalized force measurements
scaled between [−1, 1], supervised using L1 loss and optimized using Adam with lr = 1e-4 until
convergence. We compare performance using the average root mean squared error (RMSE) across all
three axes.

Results. GelSight mini images are of higher resolution (HD) compared to DIGIT (320 × 240)
resulting in smaller contact regions against the background. For this reason, we observe that when
sufficient supervised data are available for DIGIT, it is possible to train a model from scratch to
achieve high accuracy, but for GelSight the end-to-end model does not fare well. We hypothesize
that the model gets stuck in local minima and is unable to achieve higher accuracy. Nevertheless,
across the board we find that our frozen Sparsh representations can estimate forces with low error.
Specifically (see Figure 4), we find Sparsh (DINO) to be robust even when access to labeled data is
sparse, a common scenario in tactile sensing. Additional details are in Appendix D.3.

5.2 [T1A] Force field visualization
We qualitatively evaluate the representations for rendering normal and shear force fields to understand
sensor-object interactions. Although obtaining a shear field for sensors with markers nowadays is
trivial via marker tracking [54], it is challenging and underexplored for markerless sensors. We train
a CNN decoder using the reassemble-fusion approach for dense predictions [60] unsupervised, since
we do not have access to ground truth for markerless sensors. We frame normal field estimation
as depth estimation [61] and shear field estimation as optical flow [62, 63, 64, 65]. Figure 4
shows visualizations for the top-performing model Sparsh (DINO) in [T1] that provides directional
information about the relative motion of the contact patch. For instance, sliding motion (a, c, e, f),
torsional slip (b), and divergence field upon contact (d). Additional details are in Appendix D.4.

5.3 [T2] Slip detection
Task. Shear and slip are closely related. Using the same setup as force estimation, we collect strokes
where a hemispherical probe slides over the sensor, producing trajectories with both sticking and
slipping samples. Slip is labeled using the friction cone model with an empirically estimated static
friction coefficient (see Appendix D.5). The dataset, with a notable imbalance between no-slip and
slip classes, contains 125k samples with 13% slip instances. We train two decoders: one for slip
detection and another for normalized force changes (∆) as we find that predicting the two correlated
quantities jointly enhances slip detection. The MLP decoders use cross-entropy for slip detection and
mean absolute error for ∆ force regression, reserving 25k samples for evaluation.

Results. We report F1 score instead of accuracy due to the imbalance in the slip labels in the dataset.
Figure 4 illustrates the advantages of frozen Sparsh features trained under a JEPA paradigm for slip
detection, particularly challenging for DIGIT sensor and even when using only 1% of the training
dataset. In particular, Sparsh (VJEPA) achieves the highest F1 score among the models. Although all
models detect slip from the 80 ms history of tactile data, Sparsh (VJEPA) benefits from a detailed
temporal perspective, as its encoder processes a video clip with four frames spanning this window.
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Figure 3: Real data and label collection setup for TacBench tasks (a) [T1] Force estimation and [T2] Slip
detection, (b) [T3] Pose estimation, and (c) [T6] Bead maze.

(iii) [T2] Slip detection - DIGIT (↑)(i) [T1] Force estimation - DIGIT (↓) (ii) [T1] Force estimation - GelSight (↓) (iv) [T2] Slip detection - GelSight (↑) (v) [T3] Pose estimation (↑)

(vi) [T1A] Force field visualization (DIGIT) (viii) [T5] Textile recognition (↑)(vii) [T4] Grasp stability (↑) (ix) [T6] Bead Maze
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Figure 4: Summary of results comparing Sparsh and E2E on [T1]-[T6] tasks in TacBench across varying
amounts of labeled data. Pre-training with SSL yields general touch representations that work across several
tasks and sensors outperforming task and sensor specific models particularly under limited labeled data budget.

Sparsh backbones also show better performance than the E2E model when labeled training data is
significantly reduced. Additional details are in Appendix D.5.

6 Enabling physical perception
6.1 [T3] Pose estimation
Task. Tracking object pose changes can help tasks such as tracking object drift for in-hand transla-
tion [66], rotation [56, 57], and pushing [7], among others. Given that tactile images capture local
changes between sensor-object, we evaluate Sparsh representations to estimate SE(2) transforma-
tions of the object relative to the sensor. Figure 3b shows a graphical description of the data collection
procedure. The dataset consists of time-synchronized pairs of digit observations zt ∈ Rh×w×3 and
object poses Tt ∈ SE(3). Tt are then preprocessed to produce relative pose changes on the sensor
gel as St−1

t ≜ (∆x,∆y,∆θ) ∈ SE(2). We follow the regression-by-classification paradigm for this
task [10, 66]. Relative object poses are binned into a grid, capturing translations with a resolution of
±5mm and rotations with a resolution of ±2◦. For each degree-of-freedom (DoF), we train a head to
predict probability distribution over the discretized grid using cross-entropy as the loss function and
Adam optimizer.

Results. Multiclass accuracy reveals that E2E approaches perform well with ample data, but drastically
decline when labeled data are reduced, as shown in Figure 4. Small data sets make it difficult to
distinguish between close categories, such as orientation changes from [0.5◦, 1.0◦] to [1.0◦, 2.0◦].
Pretrained representations, however, maintain good performance even with only a third of the data.
In low data scenarios, decoders using tactile representations often revert to extreme values, reducing
estimation resolution and accuracy. Additional details and examples are provided in Appendix D.6.

6.2 [T4] Grasp stability
Task. Grasp stability is well-studied in the tactile sensing literature for parallel jaw grippers [40, 67,
68, 69]. We evaluate whether representations aid in predicting grasp success given a short history of

6



tactile images from a single finger. Specifically, we take inspiration from [8] and adapt the Feeling
of Success dataset. Each sample consists of a triplet of tactile images corresponding to ‘before’,
‘during’, and ‘after’ grasping a set of objects. The dataset consist of 64% successful grasps and 36%
failed grasps. We pass to the SSL model the ‘before’ and ‘during’ as tactile history. Since [8] does not
specify an official train/test split, we create our randomized split with all objects, using approximately
8k grasps for training and the remaining 1.3k grasps for evaluation.

Results. Training with the full dataset, all models achieve similar accuracy. Specifically, using
Sparsh (IJEPA) or Sparsh (VJEPA), we reach approximately 80% classification accuracy, surpassing
results from [8] that combined tactile and vision modalities. Our model, relying solely on touch from
a single finger, shows competitive performance even with only 33% and 10% of the data. However,
with just 80 training samples, performance drops significantly. More details are in Appendix D.7.

6.3 [T5] Textile recognition
Task. Vision-based tactile sensors are broadly used for material property recognition, since their
compliant gel and high resolution cameras make them effective at discriminating different materials
by surface texture [58, 39]. Specifically, we take the task definition from [58] and adapt the Clothing
Dataset. The dataset consist of 4467 short video clips (10-25 frames), of a robot with a GelSight
(markers) grasping several types of across 20 textile classes, such as leather, cotton, polyester, etc.
We follow the train-test split provided in the metadata of the dataset.

Results. Training an E2E specialist model for textile recognition using the full dataset can be chal-
lenging, as noted in [58]. However, by leveraging pre-trained touch representations, the performance
of the task can be significantly improved, even when training with only 10% of the labeled data.
Sparsh (MAE) is particularly effective in this task, as it heavily relies on pixel-level features in the
image. Additional details are in Appendix D.8.

7 Enabling manipulation planning
7.1 [T6] Bead maze
Task. The bead maze is a children’s toy to enhance fine motor skills. We adapt this task to robot
policy learning, where the goal is to guide a bead from one end to another following the path of the
wire. Given a small history of tactile images (. . . , zt−1, zt), and robot proprioception (. . . , qt−1, qt),
we train a policy to predict changes in joint angles as actions a ≜ (∆qt,∆qt+1, ...);∆q ∈ R7, to
make progress on this task. This task is fundamentally tactile-focused, as the robot needs to react to
resistance encountered by changes in the maze pattern and the subtle local movement of the bead are
difficult to perceive from vision even when not occluded by the hand. A prior version of the bead maze
task has been explored in robotics relying solely on tactile feedback [70]. In our setup, illustrated
in Figure 3, we assume that the robot starts with an initial stable grasp. We collect a dataset of 50
demonstrations on different maze patterns with a mix of VR-based and manual kinesthetic-based
teleoperation, corresponding to a total of ∼34k training pairs of tactile images and robot joint angles.
Since we are training policies with real data, we use diffusion policy [71] for this task as it is one of
the leading behavior cloning methods. For tactile observation conditioning, we replace the vision
encoder in Diffusion Policy with the pre-trained Sparsh encoders.

Results. We evaluate Sparsh (DINO) and Sparsh (IJEPA) for policy learning, as these representations
exhibit the best performance across the rest of the benchmark. For completeness, we also consider
E2E and train a tactile encoder and policy end-to-end. Due to covariate shift [72] in behavior cloning,
prediction errors can accumulate over time; therefore, we report position error between the predicted
trajectory and a demonstration trajectory from a held-out maze sequence over small chunks of 3cm
followed by the robot corresponding to 15 timesteps of action predictions. Figure 4 shows the position
error over access to different number of demonstrations for training. We find that Sparsh (DINO) and
Sparsh (IJEPA) produce significantly (a difference of ∼16%) lower trajectory errors compared to
training the policy E2E.

We report in Figure 4 distance traversed (in cm) before failure as a second metric. We evaluate the
learned policies (using all 50 demonstrations) over a set of 10 randomized novel starting locations
on the maze. We find that policies using Sparsh representations outperform E2E by ∼ 20 − 53%.
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We note that given the high precision nature of this task and the considerations for real system
deployment for the policy, none of the models succeeds in completing the full maze on robot rollouts.
We expect that increasing the diversity of training data with different maze patterns will highlight the
generalist capabilities of touch representations, and that temporal ensembling will aid in improving
the smoothness of the policy. [73]. Additional details are provided in Appendix D.9.

8 Discussion
Summary. We present Sparsh, a family of general touch representations trained with self-supervision
for vision-based tactile sensors. We learn general-purpose, cross-sensor representations from a curated,
unlabeled dataset of 460k+ samples from DIGIT, GelSight 2017, and GelSight mini sensors. We
evaluated four SSL approaches (see Figure 2) comparing their performance against task-specific
models through TacBench, a benchmark of five touch-centric tasks designed to assess the content
and quality of the representations. Our results indicate that Sparsh representations are performant
across various sensors and tasks capturing tactile properties and enhancing physical perception and
manipulation planning.

Sparsh excels in all tasks. Sparsh (DINO) is suited for physics-based tasks like force and pose
estimation, while Sparsh (IJEPA) performs better at touch semantic understanding like slip state,
stability of a grasp and textile recognition. On average Sparsh (DINO) outperforms Sparsh (IJEPA)
by 5.6% across the benchmark. Both models perform similarly in bead maze test demonstrations,
which require implicit knowledge of shear forces and slip. However, this did not translate to real
robot performance due to system-level confounding variables not captured during training and lack of
force control. These include the high precision required to keep the bead in place, the impossibility of
error recovery once grip is lost, and trajectory drift due to local decision-making. Specialist policies
or models trained from scratch exhibiting better robot rollout performance is due to the narrow task
domain setting that leads to overfitting, a trend similarly observed when studying pre-trained vision
models [71, 73, 74].

Learning touch representations in latent space is more advantageous than in pixel space, as these
representations can filter out and generalize over noise or lighting differences. Tasks traditionally
challenging for markerless sensors (like DIGIT and GelSight mini), such as shear force (and field)
estimation and slip detection, become solvable with our general touch representations. On average,
Sparsh achieves a 95.1% improvement compared to an end-to-end approach when all models have
access to only 33%− 50% of the labeled dataset per downstream task. Using as little as 10% or 1%
of the labeled data for force estimation and slip detection still yields acceptable results (e.g. force
error below 0.1N with Sparsh (DINO)). Fine-tuning Sparsh encoders is another method of assessing
the quality of pre-trained representations. We provide in Appendix E experiments with partial and
full fine-tuning. Notably, models pre-trained in latent space perform better in downstream tasks when
fully fine-tuned, especially in regression tasks like force and pose estimation. In contrast, partial
fine-tuning offers minor improvements, aligning closely with the performance of frozen models.

Sparsh is a significant step towards a general pre-trained backbone for vision-based tactile sensors.
We aim to unify efforts to compile larger tactile datasets that include additional vision-based tactile
sensors and leverage the benefits of scaling up SSL backbones, as seen in computer vision and natural
language processing. TacBench serves as an initial benchmark for evaluating these representations,
and additional tasks can be incorporated based on the needs of the tactile community. For instance,
further exploration of pre-trained touch representations in tactile policy learning, shape estimation,
and texture understanding.

Limitations. Open-source tactile datasets we considered in this study predominantly feature discrete
contact interactions. We believe that incorporating data rich in shear interactions can further improve
the representations. We do not ablate the length of tactile image history for learning the representations.
Such ablations could provide guidance on improving their quality for downstream tasks. Our bead
maze policies with pre-trained touch representations deployed on the real robot are only able to
complete the maze partially before compounding error leads to the bead falling out of the fingers.
Further research is needed to understand how to effectively leverage pre-trained touch representations
in behavioral cloning for real-robot deployment.
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Appendix

A Contributions

The contributions of the authors are as follows.
Carolina Higuera led the engineering of the project, designed the experiments, the data collection
protocol, implemented some of the SSL pretraining methods and downstream tasks, did bug fixes,
code reviews, performance evaluations, and wrote the paper.
Akash Sharma led the engineering of the project, was involved in experiment design, implemented
core functionality including SSL pretraining, conducted performance evaluations and benchmarking,
did bug fixes, code reviews and wrote the paper.
Krishna Bodduluri collected and curated labeled data for downstream tasks such as force estimation
and slip classification.
Taosha Fan advised on the project, provided feedback and helped revise the paper.
Patrick Lancaster helped with hardware setup for the Bead Maze experiment, provided feedback
and helped revise the paper.
Mrinal Kalakrishnan advised on the project, managed and supported research engineers.
Michael Kaess is Akash Sharma’s primary advisor and provided feedback on experimental results
and the paper.
Byron Boots is Carolina Higuera’s primary advisor and provided feedback on experimental results
and the paper.
Mike Lambeta technical feedback on the sensor’s operation and discussion of input design choices.
Provided feedback on experiment design and results.
Tingfan Wu helped with data collection protocols, provided feedback on experiment design and
results and helped revise the paper.
Mustafa Mukadam led the project, set the vision and research direction, steered the team and
provided guidance on all aspects of the project, including experiment design and implementation. He
was also involved in writing and revised the paper.

B Broader related work

Self Supervised Learning - In this section, we detail recent developments in masking-based self-
supervised learning approaches:

Masked Image Modeling (MIM) is the strategy of corrupting a data sample by significantly masking a
portion of the sample and training a model to recover the missing portion, conditioned on the corrupt
sample. It has become a prominent framework in SSL with the success of [23, 75]. An important
design consideration here is the output space of the model for supervision, which can be either
raw pixels [23, 76] or an alternative representation space [77, 78, 79, 75]. While training Masked
auto-encoders is simple, these models are comparatively sample inefficient during training [50].

Self-distillation [80] is the idea of training two (usually identical) networks such that a student network
learns to predict the output representations of a teacher [81] network via a small predictor network
when observing augmentations of the same data sample. It has been shown to improve performance
significantly even in the case of abundant data [82]. While degenerate constant representations is a
concern, a common strategy is to stop gradient backpropagation [25] through the teacher network and
employ momentum based weight updates [22]. A concrete instance is DINO [48] utilizing ViTs [83]
as the student & teacher encoder networks. More recently DINOv2 [49] improved downstream
performance significantly by combining self-distillation and MIM.

Joint-Embedding Predictive Architectures (JEPA) [52] share similarities with MIM, as both rely on
masking. However, the JEPA framework conceptually prescribes two key changes: a) information
restoration in a latent representation space, rather than in input space (pixels or tokens) b) prediction
of latent embedding conditioned on the masking parameters. This framework has had success across
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various modalities, including audio [84, 85], images [50, 86], and pointclouds [87]. Notably, in this
paper we consider masking strategies from I-JEPA [50] and V-JEPA [51]. I-JEPA utilizes a spatial
block-masking strategy and V-JEPA utilizes tube-masking [88] with varying aspect ratios for learning
representations efficiently in latent space circumventing decoding unnecessary pixel-level details.

Representation learning in robotics - Pretraining models for multi-task capability has become
popular recently, especially after the success of self-supervised learning (SSL) in computer vision
tasks like object classification, segmentation, depth estimation, and image generation. These tasks,
while typically tested on computer vision datasets, are also very common in robotics. The idea of
using these pre-trained representations for robot learning was initially explored in [89], showing
that pre-trained visual representations can sometimes even be better than using ground-truth state
representations for training control policies.

Generative SSL via masked image modeling (MIM) [90, 91] has shown successful transfer of pre-
trained representations from in-the-wild data to real-robot scenarios, enabling basic motor skills such
as reaching, pushing, and picking. Furthermore, many other works investigate contrastive learning
approaches to learning general visual representations in robotics [92, 93, 44]. These methods usually
employ a pixel reconstruction objective based on a time-contrastive objective or focus on contrasting
video clips leveraging natural language for video-language alignment.

The field has been moving towards finding general-purpose representations that work well across a
wide range of problems in robot manipulation learning. Voltron [94], is a framework for language-
driven visual representation learning for robotics that combines both masked auto-encoding and
contrastive learning techniques, focusing on multi-task performance. This model is trained to learn
representations that capture both low-level spatial reasoning and high-level semantic understanding
by using language supervision from human videos.

Tactile sensor simulation - Multiple simulators have been proposed for vision-based tactile sen-
sors such as [95, 96, 97, 98, 99] with the hope of sim2real generalization of learned policies [100].
However, many of these methods are either limited to marker-based tactile sensors [100], or narrow
tasks [101, 102]. Certain other methods [40] also leverage simulated data to train multi-modal repre-
sentations. However, in general we find that tactile simulators are still unable to model shadows, as
well as real-world per-sensor-instance discrepancies, hampering their potential use for representation
learning.

C Touch representation and self-supervision details

To ensure fair evaluation of all models, our SSL algorithms are largely adapted from official MAE,
I-JEPA, V-JEPA, DINO, DINOv2 codebases.

C.1 Training details

We train all models on 8 Nvidia A-100 (80G) GPUs. In addition to training losses, to monitor
training progress, we rely on online probes. Specifically, we find that for joint embedding predictive
architectures, the training losses are not indicative of model convergence during optimization;
therefore, proxy metrics such as reconstruction quality are helpful. For all methods, we utilize
DPT [103] based decoders to decode the tactile representations back into tactile images. See Figure 5
for some examples of tactile reconstructions from Sparsh embeddings. All encoder models are
trained for 150 epochs. We use AdamW optimizer and use a linear rampup followed by a cosine
schedule as the learning scheduler. Further, we find that tuning momentum value as well as the
weight decay factor was important in observing training convergence without collapse. Additional
information of hyperparameters is detailed in Table 1.

17



Figure 5: Visualization of reconstructed tactile images using the online probe to monitor SSL training of Sparsh
models.

Arch. EMA decay LR Batch size

Sparsh (MAE) ViT-B/14 N/A 1e-4 100
Sparsh (DINO) ViT-B/14 0.998 1e-4 150
Sparsh (IJEPA) ViT-B/14 0.996 6.25e-4 150
Sparsh (VJEPA) ViT-B/14 0.996 6.25e-4 150

Table 1: Training hyperparameters for Sparsh models. All models run for 150 epochs with optimizer
AdamW, a weight decay cosine schedule from 0.04 to 0.4, and a learning rate warmup of 30 epochs.).

C.2 Architecture details

All encoder models are Vision Transformers (ViT) [83]. Although the main encoder models use
ViT-B/14 as the standard architecture, following [50] we use a small ViT as the predictor network.
All the models are pretrained without a [cls] token. For DINO, which decodes the [cls] token
into classes, we repurpose ViT registers [104] to predict classes. In Table 2 we report the number of
parameters for each encoder and their respective inference times.

Tactile images with a stride of 5 i.e., It ⊕ It−5 ∈ Rh×w×6 are concatenated along the channel
dimension before the background is removed and reshaped to 224 × 224 for ViT processing. We
choose a stride of 5 as consecutive images are similar due to high sensor sampling rates, and to match
the slip detection window in humans. Ablating the effect of the input image and patch resolution may
be important for better performance and is left for future work.

C.3 Dataset splits

We use three available datasets for training Sparsh, namely YCB-Slide [9], Touch-and-Go [20] and
Object Folder [37]. The YCB-Slide dataset consist of human sliding interactions with 10 YCB objects.
Each object has 5 trajectories, with around 3500 frames each from DIGIT sensors with different
optical characteristics (180k frames in total). For each object, we dedicate four trajectories for training
and the last one for validation. Touch-and-Go consists of discrete human contact interactions with
in-the-wild objects, using a GelSight sensor. It consist of 140 videoclips and plain files with labels for
the frames with a clear contact. We use all frames (220k) in the videoclips since we do not rely on
labeled data for SSL training, from which 70% is used for training and the remaining for validation.
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Sparsh (MAE) Sparsh (DINO) Sparsh (IJEPA) Sparsh (VJEPA)
N. parameters 86254848 86255616 86386944 86537472

FPS 104 112 112 60
Table 2: Number of parameters and inference time for Sparsh backbones

The data used from ObjectFolder consist of 81k frames of robot discrete contact interactions with
objects in a controlled setting. We also use a train/val split of 70/30.

To complement the dataset, we collected Touch-Slide with additional human sliding interactions on
toy-kitchen objects with the DIGIT sensor. We use 9 objects, shown in Figure 6 and collected 5
trajectories for each, generating 180k frames in total.

For all downstream tasks we use tactile data from real sensors/hardware (DIGIT, GelSight17, and
GelSight Mini) that were not seen during Sparsh SSL training. Under our problem formulation,
this allows us to investigate generalization of Sparsh to new sensor instances (consider the case of
swapping out a sensor from a robotic hand due to wear-off).

Similarly, all objects used for downstream tasks were not used for SSL training. For example, [T1]
and [T2] tasks use a real robot arm to slide the sensor elastomer (DIGIT, GelSight mini) against an
indenter to collect force-labeled data. [T4] uses an open source dataset for grasp stability [4], which
includes data from a real robot grasping over 100 unique objects using an unseen Gelsight17 with
printed markers during SSL training. Similarly, [T6] uses DIGIT data collected from real hardware,
a robot pulling and moving a bead along the wire. Note that none of the data used for learning
representations comes from this kind of object-robot hand interactions.

Figure 6: Set of objects for collecting sliding contact trajectories in the Touch-Slide dataset.

C.4 Short summary of SSL methods

In this paper, we consider three SSL paradigms, namely Sparsh (MAE), Sparsh (DINO), and Sparsh
(IJEPA) & Sparsh (VJEPA).

Sparsh (MAE) is based on the principle of masked image modeling, where an encoder model is tasked
with learning the contextual representations of substantially masked images, such that it enables
reconstruction of the masked regions via a lightweight decoder. We use a ViT encoder and decoder
for Sparsh, and the MAE loss corresponds simply to a L2 reconstruction loss:

LMAE = ∥Itarget − Irecon∥22 (1)

Sparsh (DINO) is based on the principle of self-distillation between two identical networks, where
a student network learns to track the output predictions of a EMA teacher network. Cross-entropy
loss is employed between the predictions of the student and teacher network, both of which consume
different crops of the same input. Specifically, feature representations from each branch are passed
through a MLP head, producing probability vector over an arbitrarily chosen number of classes.
These scores are normalized to produce ps and pt for the student and teacher respectively.

LDiNO = −
∑

pt logps (2)

Sparsh (IJEPA) and Sparsh (VJEPA) share similarities with both masked image modeling and self-
distillation. Here, we employ two identical networks termed context and target networks. The context
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network corresponds to a student network, which is tasked to predict the features from a EMA target
network (teacher network), through a small predictor network. In this case, a L2 loss over features is
used to enforce similarity between the two branches. Specifically, the context network observes M
global masks of an image to produce contextual features, which are then passed through a predictor
to predict target network features of Bi local crops of the same image ŝyj

. On the other hand, the
target network consumes local crops of the image to produce syj

.

Ljepa =
∑
i∈M

∑
j∈Bi

∥ŝyj − syj∥22 (3)

D TacBench tasks and evaluation details

D.1 Labeled datasets

Task Dataset Sensor Size Collector Label

[T1] Force estimation Shear load
(indenter: sphere, flat, sharp)

DIGIT 75k Robot 3-axis force
GelSight mini 75k Robot 3-axis force

[T2] Slip detection Shear load (indenter: sphere) DIGIT 125k Robot Friction cone
[T3] Pose estimation Object sliding DIGIT 49k Human Object pose SE(2)

[T4] Grasp stability Feeling of Success [8] GelSight 2017 9.3k Robot Success (yes/no)
[T5] Textile recognition Clothing Dataset [58] GelSight 2017 120k Robot Textile ID
[T6] Bead maze Demonstrations DIGIT 34k Human Joint angles

Table 3: Datasets in TacBench for evaluating representations on downstream tasks.

D.2 Probe details

The parameters of the model updated via EMA (target encoder for Sparsh (IJEPA) and Sparsh
(VJEPA), teacher network for Sparsh (DINO), encoder from Sparsh (MAE)) are fixed and used for
evaluation. The features are pooled via attentive pooling for tasks that require global representations,
such as slip detection, resultant force estimation, and classification tasks. For tasks that require dense
reasoning, we use DPT decoders [103] to decode patch representations into full input resolution
quantities such as normal and shear force fields, and reconstructed tactile images. See Figure 7 for a
visual illustration of the probe architectures.

We follow attentive probing[51, 59] to assess the capabilities of tactile representations on the bench-
mark, as this approach allows us to determine what representations capture from self-supervision
alone. For most tasks – except force field visualization and policy learning – in the benchmark, we
freeze Sparsh and train a cross-attention module (hyperparameters in Table 4) followed by a light
2-layer MLP probe supervised, using the labeled dataset for each task.

Parameter Setting
Embedding dimension 768
N heads 12
MLP ratio 4.0
Depth 1
Layer normalization Yes

Table 4: Attentive pooling hyperparameters used for evaluation protocol of representation in downstream tasks.

D.3 [T1] Force estimation

After attentive pooling, the tactile features with 768 dimensions are passed to a 2-layer MLP with
192 and 3 units respectively, to get the 3-axis force estimations. Two independent force decoders
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Figure 7: (a) Attentive probe architecture consists of a cross attention layer followed by a linear layer to regress
resultant output quantities such as resultant force or slip state (b) Dense Prediction Transformer (DPT) [103]
consists of multiple reassemble and fusion layers to decode features from intermediate layers of the Sparsh
backbones to produce dense outputs such as normal and shear fields

are trained using DIGIT and GelSight-mini data respectively, using the sharp and sphere probe data
during training and the flat indenter data for testing. The target forces are normalized to be ±1.0 and
scaled back after prediction. We train the force decoder using Adam optimizer with 1e-4 learning
rate.

DIGIT. In Table 5 we report the average RMSE over 25k samples of unseen DIGIT data for the
force estimation task. We report metrics for each Sparsh model and the E2E approach, under four
different budgets of training data. We also provide a 95% confidence interval to ground the error
ranges of each model.

In Figure 8 we plot the friction cone from the test data, where the colormap represents the error in mN
for each axis. Note that E2E exhibit larger errors (around 500mN) for the tangential component and
they are more predominant as the normal force increases. In contrast, the top model Sparsh (DINO)
estimates with low error (< 100mN) in general across the whole range of tangential and normal
forces.

Model Full dataset (50k) 1/3 dataset 1/10 dataset 1/100 dataset

E2E
39.34

[39.21, 39.48]
61.42

[61.12, 61.72]
98.22

[97.61, 98.84]
187.51

[185.51, 188.51]

Sparsh (MAE) 36.61
[36.51, 36.71]

45.96
[45.80, 46.12]

58.55
[58.31, 58.79]

115.39
[114.69, 116.09]

Sparsh (DINO) 36.09
[36.01, 36.17]

44.03
[43.87, 44.19]

51.89
[51.69, 52.10]

97.95
[97.36, 98.52]

Sparsh (IJEPA) 40.27
[40.16, 40.38]

60.04
[59.72, 60.34]

86.57
[86.06, 87.08]

130.37
[129.59, 131.15]

Sparsh (VJEPA) 39.38
[39.30, 39.47]

56.34
[56.07, 56.62]

76.11
[75.67, 76.55]

130.83
[130.29, 131.38]

Table 5: Root Mean Squared Error (mN) and 95% confidence interval for force estimation with DIGIT data. All
models were evaluated on flat indenter data over 25k test samples.
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Figure 8: Friction cone of test data and RMSE (mN) for force estimation task with DIGIT sensor.

GelSight. In Table 6 we report the average RMSE over 25k samples of unseen GelSight data and
the corresponding 95% confidence interval. Notice from Figure 9 that the majority of errors are
localized around the dynamic shear region. It is worth noting that the errors associated with Sparsh
(DINO) remain below 150mN, whereas E2E exhibits higher errors, particularly in the estimation of
normal forces.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
57.21

[56.44, 57.98]
59.09

[58.15, 60.04]
57.43

[56.44, 58.42]
82.42

[80.98, 83.86]

Sparsh (MAE) 22.72
[22.27, 23.17]

23.28
[22.83, 23.72]

33.56
[33.04, 34.08]

78.98
[77.74, 80.21]

Sparsh (DINO) 20.25
[19.85, 20.65]

23.79
[23.40, 24.18]

32.17
[31.67, 32.67]

53.43
[52.69, 54.17]

Sparsh (IJEPA) 27.91
[27.37, 28.44]

35.20
[24.57, 35.82]

44.93
[44.13, 45.73]

91.81
[90.76, 92.86]

Sparsh (VJEPA) 33.26
[32.67, 33.84]

34.07
[33.39, 34.75]

42.35
[41.60, 43.10]

80.36
[79.26, 81.47]

Table 6: Root Mean Squared Error (mN) and 95% confidence interval for force estimation with GelSight-mini
data. All models were evaluated on flat indenter data over 25k test samples.

D.4 [T1A] Force field visualization

Since rendering the force field is a dense prediction task, we do not apply the attentive probing
protocol. Instead, we follow DPT [60], training a CNN encoder with reassemble-fusion modules
at layers 2,5,8,11 of the Sparsh encoder to progressively upsample the representations to obtain
a fine-grained prediction of the force field. After the reassemble-fusion modules, we attach two
task-specific task head, for normal and shear field prediction.

Since for markerless vision-based sensors it is not trivial to get ground truth of the force field, we
turn to unsupervised learning. Depth estimation and optical flow are analogous to the estimation
of normal and shear force fields, areas where the computer vision community has proposed several
unsupervised methodologies [62, 63, 64, 65, 61]. We borrow ideas of unsupervised monocular depth
estimation, where from two tactile images It and It−n, we learn a pose estimator for getting the
transform between frames. With the sensor intrinsic K, we map image It from pixel space to camera
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Figure 9: Friction cone of test data and RMSE (mN) for force estimation task with GelSight sensor.

plane, translate estimated depth Dt, apply transform from t to t− n, and transform back to image
plane to get Ît−n. We supervised based on the reprojection error, MSE between It−n and predicted
Ît−n. To reconstruct the shear field, we transfer ideas from unsupervised optical flow, where we warp
the features of image It to It−n based on the estimated flow and compute a photometric consistency
loss that encourages the estimated flow(shear) to align image patches with a similar appearance. This
loss is a linear combination of the Charbonnier loss and the structural similarity (SSIM) between
It−n and Ît−n. We also add a smoothness loss that acts as a regularization term, encouraging the
shear field to align the boundaries with the visual edges in the tactile image. In Figure 10 we show
snapshots of the normal and shear field predictions during sliding trajectories of the DIGIT sensor on
YCB and spherical probe objects.

Figure 10: Normalized tactile flow (unitless) visualizations using Sparsh (DINO). Top row shows predicted
force field for four key-frames from a representative YCB-Slide trajectory and bottom row shows interaction
with the spherical probe. Arrows represent the tangential forces, while the colors depict the normal forces. These
visualizations provide directional information about the relative motion of the contact patch. For instance (a)
shows torsional motion resulting from rotating along the edge, (b, c, d) show sliding on the edge, (e) shows a
diverging field when making contact with a spherical probe, and (f, g, h) show forces produced by sliding the
probe top-down.

D.5 [T2] Slip detection

To collect labeled slip data we perform a normal/shear load test. Using a firmly affixed hemispherical
probe on a flat surface, a robot presses the DIGIT sensor toward the probe, applying random normal
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forces of up to 5N. Upon reaching the target normal force, the robot slides the probe 2mm to a
randomly selected position on the sensor surface, allowing us to capture the shear profile with a F/T
sensor. To label slip, we rely on the friction cone to identify samples on the sticking and slippage
regions. A description of the procedure is illustrated in Figure 11.

Figure 11: (a) Data collection setup for [T1] Force Estimation and [T2] Slip Detection. The Mecca Robot
Arm with DIGIT / Gelsight is pressed against a static probe with random normal force. The arm then slides the
sensor over the probe which induces shear forces. (b) Slip states over one representative stroke. When the sensor
is pressed against the probe the normal force increases. The gel sensor initially resists sliding due to friction, but
gives in, which results in a slight drop in normal force while the magnitude of shear force increases.
As eluded to in Section 3, Sparsh’s inference window is approximately 80 milliseconds. This
is appropriate since this duration matches the reaction time needed by humans to adjust the grip
force when detecting partial slip [53]. We train two heads: one for slip detection and the other
for the estimation of normalized force change (∆). We find empirically that training both heads
simultaneously improves slip detection, given their high correlation. The MLP probes are trained
with cross-entropy for slip detection and mean absolute error (MAE) for ∆ force regression as loss
functions. Our dataset comprises 125k samples, with only 13% corresponding to slip instances. We
reserve 25k samples for evaluating model performance.

Table 7 provides F1-score metrics for all models under different amounts of training data. Sparsh
(VJEPA) outperforms all models, even when trained under low data regimes. In Figure 12 we contrast
the predictions over time for a sample trajectory between Sparsh (VJEPA) and E2E models trained
with 33% of the data. Note that for Sparsh (VJEPA) the errors are around the friction boundary, where
the probe is starting to slide. Also, it is worth noticing that a poor estimation of changes in shear and
normal forces is reflected in the accuracy of distinguishing between slip and no-slip. In Figure 13, we
illustrate a failure case for Sparsh (VJEPA), as its results do not align with the ground truth. However,
it is important to note that slip labeling is prone to errors due to its reliance on an experimental
coefficient of friction. Despite the inaccuracies in the friction boundary for this trajectory, Sparsh
(VJEPA) successfully detects the slip samples.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset
E2E 0.767 0.238 0.299 0.214

Sparsh (MAE) 0.783 0.818 0.691 0.269
Sparsh (DINO) 0.685 0.561 0.548 0.489
Sparsh (IJEPA) 0.776 0.791 0.775 0.726
Sparsh (VJEPA) 0.820 0.828 0.800 0.760

Table 7: Performance of models on slip detection task under different budgets of training data. We use F1 score
as metric, given that it ensures the model accurately identifies slip events without favoring the majority class. A
high F1 score indicates effective and reliable slip detection.

D.6 [T3] Pose estimation

We collect a dataset of trajectories with time-synchronized pairs of object pose measurements and
sensor observations using an Allegro hand equipped with DIGIT sensors on each finger, mounted
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Figure 12: Contrast between Sparsh (VJEPA) and E2E for a test trajectory with a spherical probe sliding on the
DIGIT sensor. Sparsh (VJEPA), even though trained only on 33% of the data, can detect slip accurately, which
is correlated with its ability to estimate changes in normal and shear forces.

Figure 13: Failure case where the ground truth does not reflect slip since it relies on an experimental coefficient
of friction. Despite the inaccuracies in the friction boundary for this trajectory, Sparsh (VJEPA) successfully
detects slip samples.

on a robot arm. The object was placed on a table and with the palm facing downward, we pressed
against it with the fingertips (see Figure 3). We manually perturbed the object’s pose by sliding and
rotating it under the Allegro fingertips. The pose of the object was tracked using ArUco tags. Given
ground truth object pose measurements in the world frame, we preprocess them into relative pose
change (∆x,∆y,∆θ) ∈ SE(2) in the sensor frame.

Since we follow a regression-by-classification approach, we discretize the range of motion for each
degree of freedom into multiple intervals in Log-uniform space. This allows us to achieve a better
data distribution across all classes, as most pose changes are concentrated around zero. The strategy
of classification-regression is also commonly explored for monocular depth estimation [105].

After attentive pooling, the features are passed to three heads, one for each degree of freedom. Each
head is an MLP with two layers, which outputs the probability distribution over 11 classes (pose
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change bins). In Figure 14 we present the binning as well as the confusion matrices on test data
for each degree of freedom, comparing E2E, Sparsh (DINO) and Sparsh (IJEPA) for pose estimation
when trained on 33% of the available labeled data. Note that Sparsh can accurate distinguish pose
changes in a low data regime, while a conventional task-specific approach struggles discerning the
differences between adjacent bins, and finally tends to default to zero or maximum relative pose
change, losing resolution in estimation.

Figure 15 shows a test trajectory over time with its ground truth labels. The colors on the plot
represent the class agreement between the pose decoders trained with Sparsh (DINO) (using 33% of
the data) and the ground truth. Darker colors indicate no error, while brighter colors indicate greater
misclassification. In Table 8 we report for each model accuracy in pose estimation over 630 test
samples and 95% confidence interval.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
0.812

[0.811, 0.813]
0.245

[0.244, 0.247]
0.162

[0.160, 0.164]
0.162

[0.160, 0.164]

Sparsh (MAE) 0.896
[0.896, 0.897]

0.719
[0.718, 0.721]

0.417
[0.414, 0.420]

0.223
[0.221, 0.225]

Sparsh (DINO) 0.913
[0.912, 0.914]

0.834
[0.832, 0.836]

0.460
[0.457, 0.461]

0.242
[0.240, 0.245]

Sparsh (IJEPA) 0.851
[0.850, 0.852]

0.601
[0.599, 0.603]

0.323
[0.321, 0.325]

0.212
[0.210, 0.215]

Sparsh (VJEPA) 0.856
[0.854, 0.857]

0.648
[0.646, 0.651]

0.368
[0.367, 0.370]

0.228
[0.225, 0.231]

Table 8: Accuracy and 95% confidence interval for pose estimation task following the regression-by-
classification paradigm. Relative pose between object and ring finger. Metrics computed over 630 test samples.

D.7 [T4] Grasp stability

We use the Feeling of Success dataset [8], which contains data from a pair of GelSight sensors (with
markers) attached to a jaw gripper (left and right fingers). The goal is to determine the success or the
failure of the grasp attempt.

We pass to the SSL model the ‘before’ and ‘during’ as tactile history. We create our randomized
split with all objects, using approximately 8k grasps for training and the remaining 1.3k grasps for
evaluation. Using attentive probing, we freeze Sparsh and train a 2-layer MLP with two output units
for grasp success classification.

In Table 9 report the accuracy for binary classification to compare the performance of the models
across different training budgets, including a 95% confidence interval. Figure 16 shows the confusion
matrices on test samples for E2E, Sparsh (DINO) and Sparsh (IJEPA) trained on a 33% of labeled
data.

D.8 [T5] Textile recognition

This tasks allows to study the capabilities of the representations for semantic understanding of the
contact, as in recognizing the type of textile that is being touched by the sensors. We use the task
definition and the data set introduced in [58]. This data set contains 4467 short video clips (10-25
frames), of a robot with a GelSight (markers) mounted parallel gripper grasping several types of
clothing, across 20 textile classes, such as leather, cotton, polyester, etc.

We follow the train-test split provided in the metadata of the dataset. Using attentive probing, we
freeze Sparsh and train a 2-layer MLP with 20 output units for textile classification. In Table 10 and
Figure 17(c) we report the accuracy for multiclass classification, comparing the performance of the
models in different training budgets.
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Figure 14: Confusion matrix on test data for ∆Tx, ∆Ty , ∆Yaw for E2E, Sparsh (DINO) and Sparsh (IJEPA)
trained on 33% of the available labeled data. The test dataset consist of 630 samples.

D.9 [T6] Bead maze

The goal in bead maze is to guide the bead along the wire, as shown in Figure 3. We don’t rely on
vision for hand-eye coordination, making the task fundamentally tactile since forces in the fingers
indicate whether the bead is moving smoothly or encountering resistance. In our setup, we use
a Franka arm with a robotic hand mounted on the wrist and DIGIT sensors on the fingers. To
collect demonstrations for training the policy, we start the task with the bead grasped between
the thumb and index fingers and move the arm to guide the bead along the wire. We collect 30
demonstrations on different maze patterns with mix of VR-based and manual kinesthetic-based
teleoperation, corresponding to a total of ∼34k training pairs of tactile images and robot joint angles.

For training the policy, we adapt Diffusion Policy [71] to our problem setting. Given a small history
of tactile images (. . . , zt−1, zt), and robot proprioception (. . . , qt−1, qt), we train the policy to
predict changes in joint angles as actions a ≜ (∆qt,∆qt+1, ...);∆q ∈ R7, instead of position control.
Following the guidelines in Diffusion Policy, we use an observation horizon of 2 and an action
prediction horizon of 8. We adhere to the official implementation for policy architecture and training
hyper-parameters. For conditioning on tactile input, we modify the CNN encoder from Diffusion
Policy and replace it with Sparsh backbones with fixed parameters. For training an end-to-end policy,
the encoder corresponds to a ViT-Base encoder with randomly initialized weights.

For each method, we evaluate the learned policies over a set of 10 randomized novel starting locations
on the maze and we measure distance traversed (in cm) before failure. In Table 11, we report
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Figure 15: Ground truth relative pose classes for Tx, Ty , and Yaw for a test trajectory. The colormap represents
the class agreements between the ground truth and the pose decoder, with darker colors indicating no error and
brighter colors indicating greater misclassification.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset

E2E
0.784

[0.783, 0.785]
0.725

[0.722, 0.728]
0.682

[0.680, 0.684]
0.478

[0.472, 0.482]

Sparsh (MAE) 0.815
[0.813, 0.817]

0.696
[0.691, 0.702]

0.764
[0.761, 0.768]

0.466
[0.461, 0.471]

Sparsh (DINO) 0.780
[0.777, 0.782]

0.706
[0.702, 0.710]

0.773
[0.772, 0.775]

0.473
[0.467, 0.479]

Sparsh (IJEPA) 0.802
[0.800, 0.804]

0.782
[0.779, 0.784]

0.768
[0.766, 0.770]

0.598
[0.597, 0.601]

Sparsh (VJEPA) 0.809
[0.805, 0.813]

0.702
[0.700, 0.704]

0.743
[0.740, 0.746]

0.523
[0.519, 0.527]

Table 9: Accuracy and 95% confidence interval for grasp stability classification over different budget sizes of
training data, using Feeling of Success dataset. Results over 1.3k grasps.

mean and variance of distance traversed comparing Sparsh (pre-trained only and pre-trained then
fully fine-tuned) against E2E. All models use 50 demonstrations for training the policy via imitation
learning. We find that policies using Sparsh representations outperform E2E by ∼ 20− 53%. Most
failure cases across methods are due to the bead getting stuck on the maze or the bead falling out of
the robot hand. While prior work such as diffusion policy suggest that frozen pre-trained models may
hurt imitation learning due to domain mismatch, we do not observe significant gains from fine-tuning
in this application. Leveraging pre-trained models in imitation learning is an active area of research,
however these results demonstrate the impact of Sparsh touch representations for robot applications.

In Table 12 we report to position error of E2E, Sparsh (DINO) and Sparsh (IJEPA) with respect to test
demonstrations on an unseen maze, highlighting the fidelity of Sparsh (DINO) and Sparsh (IJEPA) to
follow a similar trajectory. Nevertheless, this doesn’t necessarily transfer to real-world performance,
since the locality of the observations and predictions make the errors in the adjusted joint angles
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Figure 16: Confusion matrix on test data for grasp stability, comparing E2E, Sparsh (DINO) and Sparsh (IJEPA)
trained on 33% of the available labeled data. The test dataset consist of 1.3k grasps.

Model Full dataset 1/3 dataset 1/10 dataset 1/100 dataset
E2E 0.437 0.365 0.373 0.171

Sparsh (MAE) 0.599 0.588 0.527 0.330
Sparsh (DINO) 0.527 0.520 0.463 0.264
Sparsh (IJEPA) 0.506 0.478 0.399 0.217
Sparsh (VJEPA) 0.580 0.545 0.507 0.285

Table 10: Accuracy for textile classification over 20 classes using GelSight with markers dataset under different
budget of labeled data. Results over 26k tactile images, where accuracy of chance is 0.05.

to compound fast, which results in unforeseen collisions and the subsequent lose of the grasp. In
an overfitting setting, training a policy for a single maze, policies using Sparsh (DINO) and Sparsh
(IJEPA) are able to complete almost 30% of the maze on the real robot. However, it is expected
an specialist policy trained end-to-end to perform better in the overfitting setting. Experimentally,
we found than an E2E policy trained for a single maze is able to complete almost 80% of the maze
running on the real robot.

In Table 13 we summarize the performance of Sparsh across the benchmark. We find that with
respect to an E2E approach, with Sparsh we can achieve an improvement of 98.75% on average.
Sparsh (DINO) and Sparsh (IJEPA) are in general the best models across the board, showing the
benefits of learning touch representations in latent space. An MAE approach, which relies on pixel
space supervision, is still competitive, although it was not evaluated on the policy task.

E Sparsh ablations

E.1 TacBench evaluations via fine-tuning

Fine-tuning the Sparsh encoders is another method of assessing the quality of pre-trained representa-
tions. Fine-tuning can potentially enhance performance in downstream tasks when the pre-trained
model lacks task-relevant information.

We evaluated both the full and partial fine-tuning of Sparsh on TacBench. In full fine-tuning, all
encoder parameters are updated through task supervision. In partial fine-tuning, we update only the
last transformer block of the encoder. Figure 17 shows the fine-tuning results in the benchmark with
varying amounts of labeled data. Notably, models pre-trained in latent space (DINO, I-JEPA, V-JEPA)
perform better in downstream tasks when fully fine-tuned, especially in regression tasks like force and
pose estimation. For example, Figure 17(a) illustrates that errors in force estimation are significantly
lower with full fine-tuning, even with only 33% and 10% labeled data. Full fine-tuning also enhances
performance in classification tasks such as slip detection, grasp stability, and textile classification, as
shown in Figures 17(b,c). Adding in-domain data to the encoder reduces performance gaps in the
benchmark between Sparsh (DINO), Sparsh (IJEPA), and Sparsh (VJEPA). However, this method is
less effective for the Sparsh (MAE) model, which is trained in pixel space. We hypothesize that MAE
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(cm) Sparsh (DINO) Sparsh (IJEPA) Sparsh (MAE) E2E
Pre-trained 10.80± 3.68 9.4± 3.1 10.2± 4.9 6.70± 1.67
Fine-tuned 8.45± 3.21 10.02± 5.37 11.25± 3.85 6.70± 1.67

Table 11: Mean and variance of distance traversed (in cm) before failure for policies based on Sparsh and E2E.
Results over 10 randomized novel starting locations on the bead maze.

Model Full dataset 1/2 dataset 1/10 dataset

Sparsh-(E2E) 8.46
[7.61, 9.32]

7.14
[6.26, 8.05]

9.80
[8.78, 10.82]

Sparsh-(DINO) 5.54
[4.90, 6.17]

5.98
[5.29, 6.67]

5.71
[5.13,6.29]

Sparsh-(IJEPA) 5.47
[4.82, 6.13]

5.72
[5.05, 6.40]

5.46
[4.82, 6.10]

Table 12: Position error (mm) and 95% confidence interval for the Bead Maze task. We compare the ground truth
trajectory from a test demonstration in an unseen maze against the compounded trajectory from the predicted
delta joint angles from each policy.

weights are potentially more brittle when compared to other SSL models which enjoy a wider basin
of minima due to weight updates via exponential moving average. In contrast, partial fine-tuning
offers minor improvements, aligning closely with the performance of frozen models.

E.2 Sparsh ViT-small and performance

We train Sparsh for all SSL approaches decreasing the model capacity by using a transformer ViT-
small. This let us study the effect of the dimensionality of the touch representations on downstream
tasks, from 768 with ViTbase to 384 with ViTsmall. We follow the same training procedure explained
in Appendix C.

We evaluate Sparsh-vitsmall across TacBench. In Figure 17 we report the performance of each
task for different budgets of labeled data following the attentive probing protocol. Reducing the
dimensionality of the representations do plays an important role for some tasks. Regression-like tasks
such as [T1] Force estimation (see Figure 17a) exhibit a decrease in performance when reducing the
capacity of the encoders, specially when the downstream tasks needs to be trained under a limited
number of labeled data. For instance, Sparsh (DINO) increases the force estimation error by 74% for
DIGIT and 50.3% for GelSight Mini when using representations from Sparsh-vitsmall and training
the downstream tasks with 33% of labeled data. The decrease in performance is also observe in
regression-by-classification tasks, as in [T3] Pose estimation. With Sparsh-vitsmall all models
perform very similar but losing 20% accuracy even when training the downstream tasks with the
full labeled dataset. Nevertheless the performance is still better than an E2E model with a vitbase
encoder.

In general for classification tasks in the benchmark like [T2] Slip detection, [T4] Grasp stability and
[T5] Textile recognition, there is no major effect of reducing the capacity of the encoder. The drop in
performance is only significant when training the downstream task with the lowest amount of training
data, 1% in our experiments.

E.3 Sparsh and cross-sensory representation

Since Sparsh is trained on multiple GelSight-like data, we investigate whether SSL training enables
cross-sensory representations or if it helps downstream tasks trained for one sensor quickly adapt to
another. To study this, we use as a baseline the decoder trained for [T5] Textile recognition, which
was supervised with labeled data from GelSight with markers.

We collect new data using a DIGIT sensor for 10 out of the 20 textiles. Our dataset contains 11
samples for both training and testing. We load the trained decoders for [T5] using Sparsh (DINO) and
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Task Best SSL vs E2E DINO vs IJEPA MAE vs Best VJEPA vs Best
Force estimation (DIGIT) 28.31% 26.67% −4.38% −27.96%
Force estimation (GelSight) 59.74% 32.41% 1.72% −64.23%
Slip detection 242.70% 29.08% −1.21% 0.00%
Pose estimation 235.89% −37.91% −13.81% −22.33%
Grasp stability 5.14% 8.45% −10/17% −7.83%
Bead maze 19.72% −5.26% - -
Average 98.75% 8.91% −5.57% −24.47%

Table 13: Performance of Sparsh across TacBench and comparison between SSL approaches.

E2E and perform zero-shot evaluation as well as 1-shot, 5-shot, and 10-shot training and subsequent
evaluation using the DIGIT data. Table 14 reports accuracy on 110 samples of test data. Zero-shot

(a) Additional evaluations for T1 force estimation.

(b) Additional evaluations for T2 slip detection.
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(c) Additional evaluations for the perception tasks, T3 pose estimation (top), T4 grasp stability (middle) and T6
textile classification (bottom).

Figure 17: Additional evaluations of Sparsh representations on TacBench. We compare frozen Sparsh ViT-base
(most left), Sparsh fully and partially fine-tuned (middle) and finally (most right) Sparsh ViT-small to gauge
the effect of reducing the dimensionality of the representations.

evaluation with DIGIT performs close to chance, while with very few samples (10-shot) Sparsh
(DINO) classifier quickly adapts and significantly outperforms E2E. This experiment empirically
demonstrates the value of cross-sensor representations.

zero-shot 1-shot 5-shot 10-shot
Sparsh (DINO) 9.1 19.1 28.2 61.8

E2E 3.6 0.0 15.5 10.9
Table 14: Accuracy of n-shot evaluation of [T5] Textile recognition on DIGIT data to study how Sparsh
facilitates cross-sensory adaptation to the dowsntream task.
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